Skip to main content
Log in

Voltammetric and Raman microspectroscopic studies on artificial copper pits grown in simulated potable water

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Artificial copper pits were prepared by electrochemically oxidising 60–80 μm diameter copper wires embedded in an epoxy resin over periods of 12–14 h. The electrolyte matrix consisted of various combinations of approximately 40 ppm unbuffered solutions (pH = 6–8) of sodium salts of Cl, HCO3 and SO4 2− that are similar in concentration to what are found in potable water supplies in many metropolitan areas throughout the world. It was found that in the concentrations used for the study, HCO3 and to a lesser degree Cl had a positive affect on preventing pit growth under potentiostatic control, with both anions causing passivation of the copper metal. On the other hand, SO4 2− was found to be very aggressive to copper dissolution and led to the formation of relatively deep pits (about 0.5 mm). Raman microspectroscopic analyses were performed on the freshly prepared undried caps that formed at the top of the pits and allowed the identification of several corrosion products by a comparison with standard copper mineral samples. The most complicated cap structure was observed in the presence of all three anions with distinct regions of the pit corresponding to cuprite (Cu2O), eriochalcite (CuCl2 · 2H2O), atacamite and/or botallackite [Cu2Cl(OH)3] and brochantite [Cu4(SO4)(OH)6].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-H. Strehblow and B. Titze, Electrochim. Acta 25 (1980) 839.

    Google Scholar 

  2. H.-D. Speckmann, M.M. Lohrengel, J.W. Schultze and H.-H. Strehblow, Ber Bunsenges. Phys. Chem. 89 (1985) 392.

    Google Scholar 

  3. M.R.G. de Chialvo, R.C. Salvarezza, D. Vásquez Moll and A.J. Arvia, Electrochim. Acta 30 (1985) 1501.

    Google Scholar 

  4. M.R.G. de Chialvo, J.O. Zerbino, S.L. Marchiano and A.J. Arvia, J. Appl. Electrochem. 16 (1986) 517.

    Google Scholar 

  5. J. Gómez Becerra, R.C. Salvarezza and A.J. Arvia, Electrochim. Acta 33 (1988) 613.

    Google Scholar 

  6. C.I. Elsner, R.C. Salvarezza and A.J. Arvia, Electrochim. Acta 33 (1988) 1735.

    Google Scholar 

  7. M. Wanner, H. Wiese and K.G. Weil, Ber Bunsenges. Phys. Chem. 92 (1988) 736.

    Google Scholar 

  8. M. Drogowska, L. Brossard and H. Ménard, Surf. Coat. Technol. 34 (1988) 383.

    Google Scholar 

  9. M. Pérez Sánchez, M. Barrera, S. González, R.M. Souto, R.C. Salvarezza and A.J. Arvia, Electrochim. Acta 35 (1990) 1337.

    Google Scholar 

  10. M.M. Laz, R.M. Souto, S. González, R.C. Salvarezza and A.J. Arvia, Electrochim. Acta 37 (1992) 655.

    Google Scholar 

  11. M. Pérez Sánchez, R.M. Souto, M. Barrera, S. González, R.C. Salvarezza and A.J. Arvia, Electrochim. Acta 38 (1993) 703.

    Google Scholar 

  12. S.B. Ribotta, M.E. Folquer and J.R. Vilche, Corrosion 51 (1995) 682.

    Google Scholar 

  13. R.M. Souto, M.M. Laz and S. González, An. Quim. Int. Ed. 93 (1997) 252.

    Google Scholar 

  14. S. González, M. Pérez, M. Barrera, A.R. González Elipe and R.M. Souto, J. Phys. Chem. B 102 (1998) 5483.

    Google Scholar 

  15. H.S. Campbell, J. Inst. Metals 77 (1950) 345.

    Google Scholar 

  16. V.F. Lucey, Br. Corros. J. 2 (1967) 175.

    Google Scholar 

  17. E. Mattsson and A.M. Fredriksson, Br. Corros. J. 3 (1968) 246.

    Google Scholar 

  18. G.G. Geesey, P.J. Bremer, W.R. Fischer, D. Wagner, C.W. Keevil, J. Walker, A.H.L. Chamberlain and P. Angell, in G.G. Geesey, Z. Lewandowski and H.-C. Flemming, (Eds), 'Biofouling and Biocorrosion in Industrial Water Systems' (CRC Press, Boca Raton, Florida 1990), p. 243.

    Google Scholar 

  19. M. Drogowska, L. Brossard and H. Ménard, J. Electrochem. Soc. 139 (1992) 39.

    Google Scholar 

  20. I. Milošev, M. Metikoš-Huković, M. Drogowska, H. Ménard and L. Brossard, J. Electrochem. Soc. 139 (1992) 2409.

    Google Scholar 

  21. M. Drogowska, L. Brossard and H. Ménard, J. Appl. Electrochem. 24 (1994) 344.

    Google Scholar 

  22. M. Edwards and J.F. Ferguson, Am. Water Works Assoc. 85 (1993) 105.

    Google Scholar 

  23. M. Edwards, J.F. Ferguson and S.H. Reiber, Am. Water Works Assoc. 86 (1994) 74.

    Google Scholar 

  24. M. Edwards, J. Rehring and T. Meyer, Corrosion 50 (1994) 366.

    Google Scholar 

  25. J.P. Duthil, G. Mankowski and A. Giusti, Corros. Sci. 38 (1996) 1839.

    Google Scholar 

  26. G. Mankowski, J.P. Duthil and A. Giusti, Corros. Sci. 39 (1997) 27.

    Google Scholar 

  27. R.M. Souto, S. Gonzalez, R.C. Salvarezza and A.J. Arvia, Electrochim. Acta 39 (1994) 2619.

    Google Scholar 

  28. F.M. Alkharafi and H.M. Shalaby, Corrosion 51 (1995) 469.

    Google Scholar 

  29. R.E. Lobnig, R.P. Frankenthal, D.J. Siconolfi, J.D. Sinclair and M. Stratmann, J. Electrochem. Soc. 141 (1994) 2935.

    Google Scholar 

  30. M.E. Vela, G. Andreasen, S.G. Aziz, R.C. Salvarezza and A.J. Arvia, Electrochim. Acta 43 (1998) 3.

    Google Scholar 

  31. H. Strandberg and L.G. Johansson, J. Electrochem. Soc. 145 (1998) 1093.

    Google Scholar 

  32. K.P. Fitzgerald, J. Nairn and A. Atrens, Corros. Sci. 40 (1998) 2029.

    Google Scholar 

  33. S. Jouen, M. Jean and B. Hannoyer, Surf. Interface Anal. 30 (2000) 145.

    Google Scholar 

  34. A.G. Nord, K. Tronner and A.J. Boyce, Water, Air, Soil Pollut. 127 (2001) 193.

    Google Scholar 

  35. J.R. Dojlido and G.A. Best, in 'Chemistry of Water and Water Pollution' (Ellis Horwood, New York, 1993).

    Google Scholar 

  36. N.J. Laycock and R.C. Newman, Corros. Sci. 39 (1997) 1771.

    Google Scholar 

  37. R.S. Tobias, in A. Anderson (Ed.), 'The Raman Effect' (Marcel Dekker, New York, 1973), p. 408.

    Google Scholar 

  38. M. Metikoš-Huković, R. Babić and A. Marinović, J. Electrochem. Soc. 145 (1998) 4045.

    Google Scholar 

  39. C.A. Melendres, S. Xu and B. Tani, J. Electroanal. Chem. 162 (1984) 343.

    Google Scholar 

  40. J.C. Hamilton, J.C. Farmer and R.J. Anderson, J. Electrochem. Soc. 133 (1986) 739.

    Google Scholar 

  41. S.T. Mayer and R.H. Muller, J. Electrochem. Soc. 139 (1992) 426.

    Google Scholar 

  42. H.Y.H. Chan, C.G. Takoudis and M.J. Weaver, J. Phys. Chem. B 103 (1999) 357.

    Google Scholar 

  43. D.A. Scott, Stud. Conserv. 45 (2000) 39.

    Google Scholar 

  44. L. Burgio and R.J.H. Clark, Spectrochem. Acta Part A 57 (2001) 1491.

    Google Scholar 

  45. R.L. Frost, P.A. Williams, W. Martens and J.T. Kloprogge, J. Raman Spectrosc. 33 (2002) 752.

    Google Scholar 

  46. R.L. Frost, W. Martens, J.T. Kloprogge and P.A. Williams, J. Raman Spectrosc. 33 (2002) 801.

    Google Scholar 

  47. W. Martens, R.L. Frost, J.T. Kloprogge and P.A. Williams, J. Raman Spectrosc. 34 (2003) 145.

    Google Scholar 

  48. R.L. Frost, Spectrochem. Acta Part A 59 (2003) 1195.

    Google Scholar 

  49. K.P.J Williams, G.D. Pitt, D.N. Batchelder and B.J. Kip, Appl. Spectrosc. 48 (1994) 232.

    Google Scholar 

  50. B.E. Wilde and E. Williams, Electrochim. Acta 16 (1971) 1971.

    Google Scholar 

  51. T. Suzuki, M. Yamabe and Y. Kitamura, Corrosion 29 (1973) 70.

    Google Scholar 

  52. P. Perroud, Athena Mineralogy (http://un2sg4.unige.ch/athena/mineral/mineral.htm).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.D. Webster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christy, A., Lowe, A., Otieno-Alego, V. et al. Voltammetric and Raman microspectroscopic studies on artificial copper pits grown in simulated potable water. Journal of Applied Electrochemistry 34, 225–233 (2004). https://doi.org/10.1023/B:JACH.0000009923.35223.f8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000009923.35223.f8

Navigation