Skip to main content
Log in

A three-dimensional numerical simulation of the transport phenomena in the cathodic side of a PEMFC

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A three-dimensional numerical model is developed to simulate the transport phenomena on the cathodic side of a polymer electrolyte membrane fuel cell (PEMFC) that is in contact with parallel and interdigitated gas distributors. The computational domain consists of a flow channel together with a gas diffusion layer on the cathode of a PEMFC. The effective diffusivities according to the Bruggman correlation and Darcy's law for porous media are used for the gas diffusion layer. In addition, the Tafel equation is used to describe the oxygen reduction reaction (ORR) on the catalyst layer surface. Three-dimensional transport equations for the channel flow and the gas diffusion layer are solved numerically using a finite-volume-based numerical technique. The nature of the multi-dimensional transport in the cathode side of a PEMFC is illustrated by the fluid flow, mass fraction and current density distribution. The interdigitated gas distributor gives a higher average current density on the catalyst layer surface than that with the parallel gas distributor under the same mass flow rate and cathode overpotential. Moreover, the limiting current density increased by 40% by using the interdigitated flow field design instead of the parallel one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Srinivasan, D.J. Mankoo, H. Koch and M.A. Enayetullah, J. Power Sources 29 (1988) 367.

    Google Scholar 

  2. T.E. Springer, T.A. Zawodinski and S. Gottesfeld, J. Electrochem. Soc. 136 (1991) 2334.

    Google Scholar 

  3. D.M. Bernardi and M.W. Verbrugge, J. Electrochem. Soc. 139 (1992) 2477.

    Google Scholar 

  4. T.E. Springer, M.S. Wilson and S. Gottesfeld, J. Electrochem. Soc. 140 (1993) 3513.

    Google Scholar 

  5. Y.W. Rho, S. Srinivasan and Y.T. Kho, J. Electrochem. Soc. 141 (1994) 2089.

    Google Scholar 

  6. K. Broka and P. Ekdunge, J. App. Electrochem. 27 (1997) 281.

    Google Scholar 

  7. T.E. Springer, T.A. Zawodinski and S. Gottesfeld, J. Electrochem. Soc. 138 (1991) 587.

    Google Scholar 

  8. A.A. Kulikovsky, J. Divisek and A.A. Kornyshev, J. Electrochem. Soc. 146 (1999) 3981.

    Google Scholar 

  9. J.S. Yi and T.V. Nguyen, J. Electrochem. Soc. 146 (1999) 38.

    Google Scholar 

  10. A. Kazim, H.T. Liu and P. Forges, J. Appl. Electrochem. 29 (1999) 1409.

    Google Scholar 

  11. V. Gurau, F. Barbir and H.T. Liu, J. Electrochem. Soc. 147 (1999) 2468.

    Google Scholar 

  12. Z.H. Wang, C.Y. Wang and K.S. Chen, J. Power Sources 37 (2000) 1151.

    Google Scholar 

  13. J. Bear and J.M. Buchlin, 'Modeling and Application of Transport Phenomena in Porous Media' (Kluwer Academic Publishers, Boston, MA, 1991).

    Google Scholar 

  14. K.C. Rolle, 'Heat and Mass Transfer' (Prentice Hall, New Jersey, 2000).

    Google Scholar 

  15. S.V. Patankar, 'Numerical Heat Transfer and Fluid Flow' (Hemisphere, New York, 1980).

    Google Scholar 

  16. J.P. Van Doormaal and G.D. Raithby, Num. Heat Mass Transfer, Part A, 7 (1992) 147.

    Google Scholar 

  17. J.J. Hwang and D.Y. Lai, Int. J. Heat Mass Transfer 41 (1998) 979.

    Google Scholar 

  18. D. Natarajan and T.V. Nguyen, J. Electrochem. Soc. 148 (2001) 1324.

    Google Scholar 

  19. F. Jaouen, G. Lindbergh and G. Sundholmb, J. Electrochem. Soc. 149 (2002) 437.

    Google Scholar 

  20. G. Murgia, L. Pisani, M. Valentini and B. D'Aguanno, J. Electrochem. Soc. 149 (2002) 31.

    Google Scholar 

  21. W.K. Lee, S. Shimpalee and J.W. Van Zee, J. Electrochem. Soc. 150 (2003) 341.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.J. Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, J., Chen, C., Savinell, R. et al. A three-dimensional numerical simulation of the transport phenomena in the cathodic side of a PEMFC. Journal of Applied Electrochemistry 34, 217–224 (2004). https://doi.org/10.1023/B:JACH.0000009926.19770.fc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000009926.19770.fc

Navigation