Skip to main content
Log in

Electron Transfer Kinetics on Boron-Doped Diamond Part I: Influence of Anodic Treatment

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Boron-doped diamond electrodes, both as-grown and polarized anodically under different conditions, were prepared in order to study the chemical and electrochemical changes of diamond and clarify the role played by the surface-state density. Many different treatments were employed: as-grown (BDDag), mildly polarized (BDDmild), strongly polarized in perchloric acid (BDDsevererpar;, and strongly polarized in a sulphuric acid-acetic acid mixture (BDDAcOHrpar;. Charge transfer processes at the electrode surface were studied by cyclic voltammetry. Simple electron transfer processes such as the outer-sphere redox system ferri/ferrocyanide (FeIII/II;(CN)6rpar; and complex charge transfer reactions such as the inner-sphere 1,4-benzoquinone/hydroquinone (Q/H2Q) redox reaction were chosen to test the electrochemical properties of the electrodes. The properties of the diamond electrodes were found to undergo strong modification as a function of surface treatment. The active surface area and the reaction rate constants decreased significantly upon anodic polarization. Important drops in the charge carrier concentration on the surface and in true surface area led to hindrance of electron transfer at the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.B. Martin, A. Argoitia, J.C. Angus and U. Landau, J. Electrochem. Soc. 146 (1999) 2959.

    Google Scholar 

  2. T. Kondo, Y. Einaga, B.V. Sarada, T.N. Rao, D.A. Tryk and A. Fujishima, J.Electrochem.Soc. 149 (2002) E179.

    Google Scholar 

  3. K. Hayashi, S. Yamanaka, H. Okushi and K. Kajimura, Appl. Phys. Lett. 68 (1996) 376.

    Google Scholar 

  4. I. Yagi, H. Notsu, T. Kondo, D.A. Tryk and A. Fujishima, J. Electroanal. Chem. 473 (1999) 173.

    Google Scholar 

  5. D.A. Tryk, K. Tsunozaki, T.N. Rao and A. Fujishima, Diamond Relat. Mater. 10 (2001) 1804.

    Google Scholar 

  6. R.J. Zhang, S.T. Lee and Y.W. Lam, Diamond Relat. Mater. 5 (1996) 1288.

    Google Scholar 

  7. C. Lé-Clé F. Zenia, N.A. Ndao and A. Deneuville, New Diamond Front. Carbon Technol. 9 (1999) 189.

    Google Scholar 

  8. G.M. Swain, A.B. Anderson and J.C. Angus, MRS Bull. 23 (1998) 56.

    Google Scholar 

  9. I. Duo, A. Fujishima and C. Comninellis, Electrochem. Comm. 5 (2003) 695.

    Google Scholar 

  10. M.C. Granger and G.M. Swain, J. Electrochem. Soc. 146 (1999) 4551.

    Google Scholar 

  11. H. Notsu, I. Yagi, T. Tatsuma, D.A. Tryk and A. Fujishima, J. Electroanal. Chem. 492 (2000) 31.

    Google Scholar 

  12. H. Notsu, I. Yagi, T. Tatsuma, D.A. Tryk and A. Fujishima, Electrochem. and Solid State Lett. 2 (1999) 522.

    Google Scholar 

  13. T.N. Rao and A. Fujishima, Diamond Relat. Mater. 9 (2000) 384.

    Google Scholar 

  14. D. Laser and M. Ariel, J. Electroanal. Chem. 52 (1974) 291.

    Google Scholar 

  15. A.J. Bard and L.R. Faulkner, ‘Electrochemical Methods. Fundamentals and Applications’ (J. Wiley & Sons, New York, 2001).

    Google Scholar 

  16. C.D. Hodgman, ‘Handbook of Chemistry and Physics’ (Chem. Rubber Publications, Cleveland, OH, 1944).

    Google Scholar 

  17. N.G. Ferreira, L.L.G. Silva, E.J. Corat and V.J. Trava-Airoldi, Diamond Relat. Mater. 11 (2002) 1523.

    Google Scholar 

  18. A.D. Modestov, Y.E. Evstefeeva, Y.V. Pleskov, V.M. Mazin, V.P. Varnin and I.G. Teremetskaya, J. Electroanal. Chem. 431 (1997) 211.

    Google Scholar 

  19. G. Kokkinidis, J. Electroanal. Chem. 172 (1984) 265.

    Google Scholar 

  20. M.N. Latto, D.J. Riley and P.W. May, Diamond Relat. Mater. 9 (2000) 1181.

    Google Scholar 

  21. H.J. Looi, L.Y.S. Pang, A.B. Molloy, F. Jones, J.S. Foord and R.B. Jackman, Diamond Relat. Mater. 7 (1998) 550.

    Google Scholar 

  22. J.v.d. Lagemaat, D. Vanmaekelbergh and J.J. Kelly, J. Electroanal. Chem. 475 (1999) 139.

    Google Scholar 

  23. G. Pastor-Moreno and D.J. Riley, Electrochem. Comm. 4 (2002) 218.

    Google Scholar 

  24. R.C. Engstrom and V.A. Strasser, Anal. Chem. 56 (1984) 136.

    Google Scholar 

  25. K.F. Blurton, Electrochim. Acta 18 (1973) 869.

    Google Scholar 

  26. P. Chen and R.L. McCreery, Anal.Chem. 68 (1996) 3958.

    Google Scholar 

  27. S. Alehashem, F. Chambers, J.W. Strojek, G.M. Swain and R. Ramesham, Anal. Chem. 67 (1995) 2812.

    Google Scholar 

  28. Y.V. Pleskov, Y.E. Evstefeeva, M.D. Krotova, V.Y. Mishuk, V.A. Laptev, Y.N. Palyanov and Y.M. Borzdov, J. Electrochem. Soc. 149 (2002) E260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duo, I., Levy-Clement, C., Fujishima, A. et al. Electron Transfer Kinetics on Boron-Doped Diamond Part I: Influence of Anodic Treatment. Journal of Applied Electrochemistry 34, 935–943 (2004). https://doi.org/10.1023/B:JACH.0000040525.76264.16

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000040525.76264.16

Navigation