Skip to main content
Log in

Spectral Properties of Thioflavin T and Its Complexes with Amyloid Fibrils

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

Comparative analysis of the absorption and fluorescence spectra and fluorescence excitation spectra of thioflavin T (ThT) in various solvents and in the composition of amyloid fibrils has shown that ThT, when excited in the region of the long-wavelength absorption band, fluoresces in the spectral region with a maximum at 478–484 nm. The appearance in aqueous and alcohol solutions of a fluorescence band with a maximum near 440 nm has been attributed to the presence in the composition of the ThT preparations of an impurity with an absorption band in the 340–350-nm range. The literature data showing that in glycerol ThT has a wide fluorescence spectrum with two maxima are due to the artifact connected with the use of a high concentration of the dye. It has been suggested that the cause of the low quantum yield of ThT aqueous and alcohol solutions is the breakage of the system of conjugated bonds due to the reorientation of the benzothiozole and benzaminic rings of ThT in the excited state with respect to one another. The main factor determining the high quantum yield of fluorescence of ThT incorporated in fibrils is the steric restriction of the rotation of the rings about one another under these conditions. The suggestions made have been verified by the quantum-chemical calculation of the ThT molecule geometry in the ground and excited states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. L. Fink, Fold. Des., 3, R9023 (1998).

    Google Scholar 

  2. C. H. Schein, Biotechnology, 7, 1141–1149 (1989).

    Google Scholar 

  3. S. Frankel, J. Condeelis, and L. Leinwand, J. Biol. Chem., 265, 17980–17987 (1990).

    Google Scholar 

  4. R. Wetzel, in: A. R. Rees, A. R. Sternberg and R. Wetzel, Protein Engineering. A Practical Approach, IRL Press, Oxford (1992), pp. 191–219.

    Google Scholar 

  5. R. Wetzel, Trends Biotechnol., 12, 193–198 (1994).

    Google Scholar 

  6. M. A. Speed, D. I. Wang, and J. King, Nat. Biotechnol., 14, 1283–1287 (1996).

    Google Scholar 

  7. R. W. Carrell and B. Gooptu, Curr. Opin. Struct. Biol., 8, 799–809 (1998).

    Google Scholar 

  8. J. W. Kelley, Structure, No. 5, 595–600 (1997).

    Google Scholar 

  9. J. D. Harper and P. T. Lansbury, Jr., Ann. Rev. Biochem., 66, 385–407 (1997).

    Google Scholar 

  10. E. H. Koo, P. T. Lansbury, Jr, and J. W. Kelly, Proc. Natl. Acad. Sci. USA, 96, 9989–9990 (1999).

    Google Scholar 

  11. M. Hashimoto and E. Masliah, Brain Pathol., No. 9, 707–720 (1999).

    Google Scholar 

  12. V. N. Uverskii (Uversky), A. Talapatra, J. R. Gillespie, and A. L. Fink, Med. Sci. Monitor, 5, 1001–1012 (1999).

    Google Scholar 

  13. V. N. Uverskii (Uversky), A. Talapatra, J. R. Gillespie, and A. L. Fink, Med. Sci. Monitor, 5, 1238–1254 (1999).

    Google Scholar 

  14. C. Bodenreider, N. Kellershohn, M. E. Goldberg, and A. Mejean, Biochemistry, 41, 14988–14999 (2002).

    Google Scholar 

  15. F. Hannemann, A. K. Bera, B. Fischer, M. Lisurek, K. Teuchner, and R. Bernhardt, Biochemistry, 41, 11008–11016 (2002).

    Google Scholar 

  16. A. P. Capaldi, M. C. Shastry, C. Kleanthous, H. Roder, and S. E. Radford, Nat. Struct. Biol., 1, 68–72 (2001).

    Google Scholar 

  17. K. K. Turoverov and I. M. Kuznetsova, J. Fluores., 13, 41–57 (2003).

    Google Scholar 

  18. I. M. Kuznetsova, O. V. Stepanenko, O. I. Povarova, A. G. Biktashev, V. V. Verkhusha, M. M. Shavlovsky, and K. K. Turoverov, Biochemistry, 41, 13127–13132 (2002).

    Google Scholar 

  19. G. V. Semisotnov, N. A. Rodionova, O. I. Razgulyaev, V. N. Uverskii (Uversky), A. F. Grupas', and R. I. Gilmanshin, Bioplymers, 31, 119–128 (1991).

    Google Scholar 

  20. H. Naiki, K. Higuchi, M. Hosokawa, and T. Takeda, Anal. Biochem., 177, 244–249 (2989).

    Google Scholar 

  21. H. Haiki, K. Higuchi, K. Matsushima, A. Shimada, W. H. Chen, M. Hosokawa, and T. Takeda, Lab. Invest., 62, 768–773 (1990).

    Google Scholar 

  22. H. LeVine, III, Protein Sci., 2, 404–410 (1993).

    Google Scholar 

  23. H. LeVine, III, Int. J. Exp. Clin. Invest., 2, 1–6 (1995).

    Google Scholar 

  24. H. LeVine, III, Arch. Biochem. Biophys., 342, 306–316 (1997).

    Google Scholar 

  25. H. LeVine, III, Methods Enzymol., 309, 274–284 (1999).

    Google Scholar 

  26. Y. Yoshiike, D. H. Chui, T. Akagi, N. Tanaka, and A. Takashima, J. Biol. Chem., 278, 23648–23655 (2003).

    Google Scholar 

  27. A. Elhaddaoui, A. Delacourte, and S. Turrell, J. Mol. Struct., 294, 115–118 (1993).

    Google Scholar 

  28. D. Allop, L. Swanson, S. Moore, Y. Davies, A. York, O. M. El-Agnaf, and I. Soutar, Biochem. Biophys. Res. Commun., 285, 58–63 (2001).

    Google Scholar 

  29. R. O. Loutfy and B. A. Arnold, J. Phys. Chem., 86, 4205–4211 (1982).

    Google Scholar 

  30. V. N. Uverskii (Uversky), S. Winter, and G. Lober, Biophys. Chem., 60, 79–88 (1996).

    Google Scholar 

  31. V. N. Uverskii (Uversky), S. Winter, and G. Lober, Biophys. Chem., 60, 79–88 (1996).

    Google Scholar 

  32. J. Goers, S. E. Permyakov, E. A. Permyakov, V. N. Uverskii (Uversky), and A. L. Fink, Biochemistry, 41, 12546–12551 (2002).

    Google Scholar 

  33. J. R. Kumita, C. J. Waston, L. P. Choo-Smith, G. A. Wooley, and O. S. Smart, Biochemistry, 42, 4492–2298 (2003).

    Google Scholar 

  34. L. Zhu, X. J. Zhang, L. Y. Wang, J. M. Zhou, and S. Perett, J. Mol. Biol., 328, 235–(2003).

    Google Scholar 

  35. T. Ban, D. Hamada, K. Hasegawa, H. Naiki, and Y. Goto, J. Biol. Chem., 278, 16462–16465 (2003).

    Google Scholar 

  36. K. K. Turoverov, A. G. Biktashev, A. S. Dorofeyuk, and I. M. Kuznetsova, Tsitologiya, 40, 806–817 (1998).

    Google Scholar 

  37. J. J. Stewart, J. Comput. Chem., 10, 221–264 (1989).

    Google Scholar 

  38. M. W. Schmidt, K. K. Baldridge, and J. A. Boatz, J. Comput. Chem., 14, 1347–1363 (1993).

    Google Scholar 

  39. M. C. Zerner, in: K. B. Lepkowitz and D. B. Boyd (Eds.), Semiempirical Molecular Orbital Methods. Reviews in Computational Chemistry II, VCH Publishers, New York (1991), pp. 313–366.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voropai, E.S., Samtsov, M.P., Kaplevskii, K.N. et al. Spectral Properties of Thioflavin T and Its Complexes with Amyloid Fibrils. Journal of Applied Spectroscopy 70, 868–874 (2003). https://doi.org/10.1023/B:JAPS.0000016303.37573.7e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JAPS.0000016303.37573.7e

Navigation