Skip to main content
Log in

An Analytical Model for the ‘Large, Fluctuating Synaptic Conductance State’ Typical of Neocortical Neurons In Vivo

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

A model of in vivo-like neocortical activity is studied analytically in relation to experimental data and other models in order to understand the essential mechanisms underlying such activity. The model consists of a network of sparsely connected excitatory and inhibitory integrate-and-fire (IF) neurons with conductance-based synapses. It is shown that the model produces values for five quantities characterizing in vivo activity that are in agreement with both experimental ranges and a computer-simulated Hodgkin-Huxley model adapted from the literature (Destexhe et al. (2001) Neurosci. 107(1): 13–24). The analytical model builds on a study by Brunel (2000) (J. Comput. Neurosci. 8: 183–208), which used IF neurons with current-based synapses, and therefore does not account for the full range of experimental data. The present results suggest that the essential mechanism required to explain a range of data on in vivo neocortical activity is the conductance-based synapse and that the particular model of spike initiation used is not crucial. Thus the IF model with conductance-based synapses may provide a basis for the analytical study of the ‘large, fluctuating synaptic conductance state’ typical of neocortical neurons in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (eds.) (1972) Handbook of Mathematical Functions. Dover Publications, New York.

    Google Scholar 

  • Amit DJ, Brunel N (1997) Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7: 237-252.

    Google Scholar 

  • Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: Explanation of the large varibality in evoked cortical responses. Science 273: 1868-1871.

    Google Scholar 

  • Aviel Y, Pavlov E, Abeles M, Horn D (2002) Synfire chain in a balanced network. Neurocomput. 44-46: 285-292.

    Google Scholar 

  • Azouz R, Gray CM (1999) Cellular mechanisms contribute to response variablity of cortical neurons in vivo. J. Neurosci. 19(6): 2209-2223.

    Google Scholar 

  • Bernander O, Douglas RJ, Martin KAC, Koch C (1991) Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc. Natl. Acad. Sci. USA 88: 11569-11573.

    Google Scholar 

  • Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8: 183-208.

    Google Scholar 

  • Brunel N, Hakim V (1999) Fast global oscillation in networks of integrate-and-fire N with low firing rates. Neural. Comput. 11: 1621-1671.

    Google Scholar 

  • Brunel N, Sergi S (1998) Firing frequency of leaky integrate-and-fire neurons with synaptic current dynamics. J. Theor. Neurobiol. 195: 87-95.

    Google Scholar 

  • Bugmann G, Christodoulou C, Taylor JG (1997) Role of temporal integration and fluctuation detection in the highly irregular firing of a leaky integrator neuron model with partial reset. Neural Comput. 9: 985-1000.

    Google Scholar 

  • Burkitt AN (2000) Balanced neurons: Analysis of leaky integrateand-fire neurons with reversal potential. Biol. Cybern. 85: 247-255.

    Google Scholar 

  • Burkitt AN, Meffin H, Grayden DB (2003) Study of neuronal gain in a conductance-based leaky integrate-and-fire neuron model with balanced excitatory and inhibitory synaptic input. Biol. Cybern. 89: 119-125.

    Google Scholar 

  • Câteau H, Fukai T (2001) Fokker-Planck approach to the pulse packet propagation in synfire chain. Neural Networks 14: 675-685.

    Google Scholar 

  • Chance FS, Abbott LF, Reyes AD (2002) Gain modulation from background synaptic input. Neuron 35: 773-782.

    Google Scholar 

  • Destexhe A (2001) Simulations of in-vivo-like activity in neocortical neurons using fluctuating synaptic conductances. http://cns.iaf.cnrs-gif.fr/alain demos.html.

  • Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyrimidal neurons in vivo. J. Neurophysiol. 81: 1531-1547.

    Google Scholar 

  • Destexhe A, Rudolph M, Fellous J-M, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in-vivo-like activity in neocortical neurons. Neurosci. 107: 13-24.

    Google Scholar 

  • Doedel EJ, Paffenroth RC, Champneys AR, Fairgrieve TF, Kuznetov YA, Sandstede B, Wang X (2000) AUTO2000: Continuation and Bifurcation Software for ODE's. http://www.ama.caltech.edu/ redrod/auto2000/distribution.

  • Feng J, Brown D (1998) Spike output jitter, mean firing time and coefficient of variation. J. Phys. A. 31: 1239-1252.

    Google Scholar 

  • Gerstein GL, Mandelbrot B (1964) Random walk models for the spike activity of a single neuron. Biophys. J. 4: 41-68.

    Google Scholar 

  • Gutkin BS, Ermentrout GB (1998) Dynamics of membrane excitability determine interspike interval variability: A link between spike generation mechanisms and cortical spike train statistics. Neural Comput. 10: 1047-1065.

    Google Scholar 

  • Häusser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290: 739-744.

    Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput. 9: 1179-1209.

    Google Scholar 

  • Johnston D, Magee JC, Colbert CM, Christie BR (1996) Active properties of neuronal dendrites. Annu. Rev. Neurosci. 19: 165-186.

    Google Scholar 

  • Kisley MA, Gerstein GL (1999) The continuum of operating modes for passive model neurons. Neural Comput. 11: 1139-1154.

    Google Scholar 

  • Lampl I, Reichova I, Ferster D (1999) Synchonous membrane potential fluctuations in neurons of the cat visual cortex. Neuron 22: 361-374.

    Google Scholar 

  • Longtin A, Doiron B, Bulsara, AR (2002) Noise-induced divisive gain control in neuron models. BioSys. 67: 147-156.

    Google Scholar 

  • Mel BW (1999) Why have dendrites? A computational perspective. In: GJ Stuart, N Spruston, M H¨usser, eds. Dendrites. Oxford Uni. Press, NY, pp. 271-289.

    Google Scholar 

  • Moreno R, de la Rocha J, Renart A, Parga N (2002) Response of spiking neurons to correlated input. Phys. Rev. Lett. 89(28): 288101.

    Google Scholar 

  • Panzeri S, Rolls ET, Battaglia F, Lavis R (2001) Speed of feedforward and recurrent processing in multilayer networks of integrate-and-fire neurons. Network: Comput. Neural Syst. 12: 423-440.

    Google Scholar 

  • Paré D, Shink E, Gaudreau H, Destexhe A, Lang EJ (1998) Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo. J. Neurophysiol. 79: 1450-1460.

    Google Scholar 

  • Pongracz F, Firestein S, Shepard GM (1991) Electrotonic structure of olafactory sensory neurons analysed by intracellular and whole cell patch techniques. J. Neurophysiol. 65: 747-758.

    Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rudolph M, Destexhe A (2003a) The discharge variability of neocortical neurons during high-conductance states. Neurosci. 119: 855-873.

    Google Scholar 

  • Rudolph M, Destexhe A (2003b) A fast-conducting, stochastic integrative mode for neocortical neurons in vivo. J. Neurosci. 24(6): 2466-2476.

    Google Scholar 

  • Rudolph M, Destexhe A (2003c) Tuning neocortical pyramidal neurons between integrators and coincidence detectors. J. Comput. Neurosci. 14(3): 239-251.

    Google Scholar 

  • Salinas E, Sejnowski TJ (2000) Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J. Neurosci. 20: 6193-6209.

    Google Scholar 

  • Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4: 569-579.

    Google Scholar 

  • Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. J. Neurosci. 18: 3870-3896.

    Google Scholar 

  • Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13: 334-350.

    Google Scholar 

  • Spruston N, Johnston D (1992) Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J. Neurophysiol. 67: 508-529.

    Google Scholar 

  • Stevens CF, Zador AM (1998) Input synchrony and the irregular firing of cortical neurons. Nature Neurosci. 1(3): 210-217.

    Google Scholar 

  • Stuart G, Spruston N, Häusser M (1999) Dendrites. Oxford Unversity Press, NY.

    Google Scholar 

  • Tetzlaff T, Giesel T, Diesmann M (2002) The ground state of cortical feedforward networks. Neurocomput. 44-46: 673-678.

    Google Scholar 

  • Tiesinga PHE, José JV, Sejnowski TJ (2000) Comparison of currentdriven and conductance-driven neocortical model neurons with Hodgkin-Huxley voltage-gated channels. Phys. Rev. E 62: 8413-8419.

    Google Scholar 

  • Traub RD, Miles R (1991) Neuronal Networks of the Hippocampus. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Treves A (1993) Mean-field analysis of neuronal spike dynamics. Network: Comput. Neural Syst. 4: 259-284.

    Google Scholar 

  • Troyer TW, Miller KD (1997) Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Comput. 9: 971-983.

    Google Scholar 

  • Tsodyks MV, Sejnowski TJ (1995) Rapid state switching in balanced cortical network models. Network: Comput. Neural Sys. 6: 111-124.

    Google Scholar 

  • Tsodyks MV, Kenet T, Grinvald A, Arieli A (1999) Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286: 1943-1945.

    Google Scholar 

  • Tuckwell HC (1988a) Introduction to Theoretical Neurobiology: Vol. 1, Linear Cable Theory and Dendritic Structure. Cambridge University Press, Cambridge.

    Google Scholar 

  • Tuckwell HC (1988b) Introduction to Theoretical Neurobiology: Vol. 2, Nonlinear and Stochastic Theories. Cambridge University Press, Cambridge.

    Google Scholar 

  • Usher M, Stemmler M, Koch C, Olami Z (1994) Network amplification of local fluctuations cause high spike rate variability, fractal firing patterns and oscillatory local field potentials. Neural Comput. 6: 795-836.

    Google Scholar 

  • van Kampen NG (1992) Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam.

    Google Scholar 

  • van Rossum MCW, Turrigiano GG, Nelson SB (2002) Fast propagation of firing rates through layered networks of noisy neurons. J. Neurosci. 22: 1956-1966.

    Google Scholar 

  • van Vreeswijk C, Somplinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274: 1724-1726.

    Google Scholar 

  • van Vreeswijk C, Somplinsky H (1998) Chaotic balanced state in a model of cortical circuits. Neural Comput. 10: 1321-1371.

    Google Scholar 

  • Williams SR, Stuart GJ (2000) Site independence of EPSP time course is mediated by dendrtic Ih in neocortical pyramidal neurons. J. Neurophysiol. 83: 3177-3182.

    Google Scholar 

  • Williams SR, Stuart GJ (2002) Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science 295: 1907-1910.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meffin, H., Burkitt, A.N. & Grayden, D.B. An Analytical Model for the ‘Large, Fluctuating Synaptic Conductance State’ Typical of Neocortical Neurons In Vivo . J Comput Neurosci 16, 159–175 (2004). https://doi.org/10.1023/B:JCNS.0000014108.03012.81

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCNS.0000014108.03012.81

Navigation