Skip to main content
Log in

Thin Film Piezoelectrics for MEMS

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Thin film piezoelectric materials offer a number of advantages in microelectromechanical systems (MEMS), due to the large motions that can be generated, often with low hysteresis, the high available energy densities, as well as high sensitivity sensors with wide dynamic ranges, and low power requirements. This paper reviews the literature in this field, with an emphasis on the factors that impact the magnitude of the available piezoelectric response. For non-ferroelectric piezoelectrics such as ZnO and AlN, the importance of film orientation is discussed. The high available electrical resistivity in AlN, its compatibility with CMOS processing, and its high frequency constant make it especially attractive in resonator applications. The higher piezoelectric response available in ferroelectric films enables lower voltage operation of actuators, as well as high sensitivity sensors. Among ferroelectric films, the majority of the MEMS sensors and actuators developed have utilized lead zirconate titanate (PZT) films as the transducer. Randomly oriented PZT films show piezoelectric e 31,f coefficients of about −7 C/m2 at the morphotropic phase boundary. In PZT films, orientation, composition, grain size, defect chemistry, and mechanical boundary conditions all impact the observed piezoelectric coefficients. The highest achievable piezoelectric responses can be observed in {001} oriented rhombohedrally-distorted perovskites. For a variety of such films, e 31,f coefficients of −12 to −27 C/m2 have been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.D. Bannon, J.R. Clark, and C.T.C. Nguyen, IEEE J. Sol. State Circuits, 35(4), 512 (2000).

    Google Scholar 

  2. L.W. Lin, R.T. Howe, and A.P. Pisano, J. MEMS, 7(3), 286 (1998).

    Google Scholar 

  3. L. Pescini, H. Lorenz, and R.H. Blick, Appl. Phys. Lett. 82(3), 352 (2003).

    Google Scholar 

  4. M.A. Abdelmoneum, M.U. Demirci, and C.T.-C. Nguyen, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE, 698 (2003).

  5. Y. Ito, K. Kushida, K. Sugawara, and H. Takeuchi, IEEETUFFC, 42, 316 (1995).

    Google Scholar 

  6. M.A. Dubois and P. Muralt, Appl. Phys. Lett., 74, 3032 (1999).

    Google Scholar 

  7. S.H. Kim, J.H. Kim, H.D. Park, and G.W. Yoon, J. Vac. Sci. Tech.B, 19, 1164 (2001).

    Google Scholar 

  8. M. Umeda, K. Nakamura, and S. Ueha, Jpn. J. Appl. Phys. Part 1, 36(5B), 3146 (1997).

    Google Scholar 

  9. G.W. Taylor, J.R. Burns, S.M. Kammann, W.B. Powers, and T.R. Welsh, IEEE J. Ocean. Eng., 26(2), 539 (2001).

    Google Scholar 

  10. G.K. Ottman, H.F. Hofmann, and G.A. Lesieutre, IEEE Trans. Power Electron., 18(2), 696 (2003).

    Google Scholar 

  11. P. Glynne-Jones, S.P. Beeby, and N.M. White, IEE Proc. Sci. Meas. Tech. 148(2) 68 (2001).

    Google Scholar 

  12. J.J. Bernstein, S.L. Finberg, K. Houston, L.C. Niles, H.D. Chen, L.E. Cross, K.K. Li, and K. Udayakumar, IEEE Trans. UFFC, 44, 960 (1997).

    Google Scholar 

  13. Y. Nemirovsky, A. Nemirovsky, P. Muralt, and N. Setter, Sen. and Act., A56, 239 (1996).

    Google Scholar 

  14. P. Muralt, M. Kohli, T. Maeder, A. Kolkin, K. Brooks, N. Setter, and R. Luthier, Sen. and Act., A48, 157 (1995).

    Google Scholar 

  15. P. Muralt, IEEE Trans. UFFC, 47(4), 903 (2000).

    Google Scholar 

  16. D.L. Polla and L.F. Francis, MRS Bulletin, 21(7), 59 (1996).

    Google Scholar 

  17. L.-P.Wang, K. Deng, L. Zou, R. Wolf, R.J. Davis, and S. Trolier-McKinstry, IEEE Electron Device Lett., 23, 182 (2002).

    Google Scholar 

  18. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices(Clarendon Press, Oxford, 1979).

    Google Scholar 

  19. T. Ikeda, Fundamentals of Piezoelectricity(Oxford University Press, New York, 1996).

    Google Scholar 

  20. R.M. White and V.W. Voltmer, Appl. Phys. Lett., 17, 314 (1965).

    Google Scholar 

  21. K. Tsubouchi and N. Mikoshiba, IEEE Trans. Son. Ultrasonics, 32, 634 (1985).

    Google Scholar 

  22. H. Nakahata, H. Kitabayashi, T. Uemura, A. Hachigo, K. Higaki, S. Fujii, Y. Seki, K. Yoshida, and S. Shikata, Jpn. J. Appl. Phys. Pt 1, 372918 Sp. Iss. SI (1998).

    Google Scholar 

  23. G.F. Iriarte, J. Appl. Phys., 93, 9604 (2003).

    Google Scholar 

  24. I. Cerven, T. Lacko, I. Novotny, V. Tvarozek, and M. Harvanka, J. Cryst. Growth, 131(3/4), 546 (1993).

    Google Scholar 

  25. J.G. Smits and W.S. Choi, IEEE TUFFC, 38(3), 256 (1991).

    Google Scholar 

  26. Q. Meng, M. Mehregany, and K. Deng, J. Micromech. Microeng., 3, 18 (1993).

    Google Scholar 

  27. Ph. Luginbuhl, G.-A. Racine, Ph. Lerch, B. Romanowicz, K.G. Brooks, N.F. de Rooij, Ph. Renaud, and N. Setter, Int. Conf. Solid-State Sens. Act., Proc., 1, 413 (1995).

    Google Scholar 

  28. T. Fabula, H. Wagner, B. Schmidt, and S. Buttgenbach, Sens. Act. A, 42(1-3), 375 (1994).

    Google Scholar 

  29. F.S. Hickernell, Proc. IEEE, 64, 631 (1976).

    Google Scholar 

  30. A. Rodriguez-Navarro, W. Otano-Rivera, J.M. Garcia-Ruiz, and R. Messier, J. Mater. Res., 12, 1850 (1997).

    Google Scholar 

  31. M.A. Dubois and P. Muralt, Appl. Phys. Lett., 74(20), 3032 (1999).

    Google Scholar 

  32. F.J. Hickernell, R.X. Yue, and F.S. Hickernell, IEEE Trans. UFFC, 44, 615 (1997).

    Google Scholar 

  33. H.P. Loebl, C. Metzmacher, R.F. Milsom, P. Lok, F. van Straten, and A. Tuinhout, J. Electroceramics, forthcoming issue.

  34. M.-A. Dubois and P. Muralt, J. Appl. Phys., 89, 6389 (2001).

    Google Scholar 

  35. A. Barker, S. Crowther, and D. Rees, Sensors & Actuators, 58, 229 (1997).

    Google Scholar 

  36. A.L. Kholkin, C. Wutchrich, D.V. Taylor, and N. Setter, Rev. Sci. Instrum., 67(5), 1935 (1996).

    Google Scholar 

  37. J.F. Shepard, Jr., P.J. Moses, and S. Trolier-McKinstry, Sens. Actuators A, 71, 133 (1998).

    Google Scholar 

  38. M.A. Dubois and P. Muralt, Sens. Act. A, 77(20), 106 (1999).

    Google Scholar 

  39. F.J. von Preissig, H. Zeng, and E.S. Kim, Smart Mater. Struct., 7, 396 (1998).

    Google Scholar 

  40. J.G. Gualtieri, J.A. Kosinski, and A. Ballato, Trans. UFFC, 41, 53 (1994).

    Google Scholar 

  41. G. Carlotti, G. Socino, A. Petri, and E. Verona, Proc. 1987 IEEE Ultrason. Symp.(Oct. 1987), p. 295.

  42. K. Tsubouchi, K. Sugai, and N. Mikoshiba, IEEE Ultrason. Symp., Oct. 1981, p. 375.

  43. N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, Sens. Act. A, 105, 162 (2003).

    Google Scholar 

  44. D. Peroulis, S.P. Pacheco, K. Sarabandi, and L.P.B. Katehi, IEEE Trans. Microwav. Theory Tech., 51(10), 259 (2003).

    Google Scholar 

  45. F. Xu, S. Trolier-McKinstry, W. Ren, and B. Xu, J. Appl. Phys., 89(2), 1336 (2001).

    Google Scholar 

  46. K. Saito, T. Kurosawa, T. Akai, T. Oikawa, and H. Funakubo, J. Appl. Phys., 93(1), 545 (2003).

    Google Scholar 

  47. X.H. Du, J.H. Zheng, U. Belegundu, and K. Uchino, Appl. Phys. Lett., 72(19), 2421 (1998).

    Google Scholar 

  48. S.-E. Park and T.R. Shrout, IEEE Trans. UFFC, 44, 1140 (1997).

    Google Scholar 

  49. B. Noheda, D.E. Cox, G. Shirane, R. Guo, B. Jones, and L.E. Cross, Phys. Rev. B, 63(1), 014103 (2001).

    Google Scholar 

  50. H.D. Chen, K.R. Udayakumar, C.J. Gaskey, and L.E. Cross, Appl. Phys. Lett., 67(23), 3411 (1995).

    Google Scholar 

  51. A. Seifert, N. Ledermann, S. Hiboux, J. Baborowski, P. Muralt, and N. Setter, Integr. Ferro., 35(1-4), 1889 (2001).

    Google Scholar 

  52. F. Xu, R.A. Wolf, T. Yoshimura, and S. Trolier-McKinstry, Proc. 11th Int. Symp. Electrets, 386 (2002).

  53. R.A.Wolf and S. Trolier McKinstry, J. Appl. Phys., 95(3), 1397 (2004).

    Google Scholar 

  54. T. Haccart, C. Soyer, E. Cattan, and D. Remiens, Ferroelectrics, 254(1-4), 185 (2001).

    Google Scholar 

  55. I. Kanno, H. Kotera, K. Wasa, T. Matsunaga, T. Kamada, and R. Takayama, J. Appl. Phys., 93(7), 4091 (2003).

    Google Scholar 

  56. D.-J. Kim, J.-P. Maria, A.I. Kingon, and S.K. Streiffer, J. Appl. Phys., 93, 5568 (2003).

    Google Scholar 

  57. R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, and S.E. Park, Jpn. J. Appl. Phys. Part 1, 40(10), 5999 (2001).

    Google Scholar 

  58. T.R. Shrout, Private Communication (2002).

  59. K. Kakimoto, H. Kakemoto, S. Fujita, and Y. Masuda, J. Am. Ceram. Soc., 85(4), 1019 (2002).

    Google Scholar 

  60. B.A. Tuttle, T.J. Garino, J.A. Voight, T.J. Headley, D. Dimos, and M.O. Eatough, Science and Technology of Electroceramic Thin Films, edited by O. Auciello and R. Waser, Kluwer Academic Publishers, The Netherlands, 117 (1995).

    Google Scholar 

  61. A.L. Kholkin, M.L. Calzada, P. Ramos, J. Mendiola, and N. Setter, Appl. Phys. Lett., 69, 3602 (1996).

    Google Scholar 

  62. P. Muralt, J. Micromech. Microeng., 10, 136 (2000).

    Google Scholar 

  63. K.G. Brooks, I.A. Reaney, R. Klissurska, Y. Huang, L. Bursill, and N. Setter, J. Mater. Res., 9, 2540 (1994).

    Google Scholar 

  64. S.-Y. Chen and I.-W. Chen, J. Amer. Cer. Soc., 77, 2337 (1994).

    Google Scholar 

  65. R.W. Whatmore, Q. Zhang, Z. Huang, and R.A. Dorey, Materials Science in Semiconductor Processing, 5, 65 (2003).

    Google Scholar 

  66. J.H. Park, F. Xu, and S. Trolier-McKinstry, J. Appl. Phys., 89(1), 568 (2001).

    Google Scholar 

  67. D.M. Kim, S.D. Bu, C.B. Eom, S. K. Streiffer, W. Tian, X.Q. Pan, T. Yoshimura, S. Trolier-McKinstry, D.G. Schlom, V. Nagurajan, A. Stanishev-Sky, J. Ouyang, R. Ramash, W. Tian, and X.Q. Pan, unpublished.

  68. T. Yoshimura and S. Trolier-McKinstry, Integr. Ferroelectr., 50, 33 (2002).

    Google Scholar 

  69. A.J. Bell, J. Appl. Phys., 89(7), 3907 (2001).

    Google Scholar 

  70. Q.Q. Zhang, Q.F. Zhou, and S. Trolier-McKinstry, Appl. Phys. Lett., 80(18), 3370 (2002).

    Google Scholar 

  71. Q.F. Zhou, Q.Q. Zhang, and S. Trolier-McKinstry, J. Appl. Phys., 94(5) 3397 (2003).

    Google Scholar 

  72. Z. Zhang, J.-H. Park, and S. Trolier-McKinstry, MRS. Proc. 596 Ferroelectric Thin Films VIII, edited by R.W. Schwartz, P.C. McIntyre, Y. Miyasaka, S.R. Summerfelt, and D. Wouters, Materials Research Society, Warrendale, PA, 73, (2000).

    Google Scholar 

  73. J.P. Maria, Ph.D. Thesis, The Pennsylvania State University (1998).

  74. J.F. Shepard Jr., S. Trolier-McKinstry, M. Hendrickson, and R. Zeto, MRS Proc. 459: Materials for Smart Systems II, 47 (1997).

  75. N. Kim, Ph. D. Thesis, The Pennsylvania State University (1994).

  76. F. Jona and G. Shirane, Ferroelectric Crystals(Pergamon Press, New York, 1962).

    Google Scholar 

  77. T.M. Shaw, S. Trolier-McKinstry, and P.C. McIntyre, Ann. Rev. Mater. Sci., 30, 263 (2000).

    Google Scholar 

  78. T. Yoshimura and S. Trolier-McKinstry, J. Appl. Phys., 92(7), 3979 (2002).

    Google Scholar 

  79. J. Nino, T. Yoshimura, and S. Trolier-McKinstry, J. Mat. Res.(2003), submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trolier-McKinstry, S., Muralt, P. Thin Film Piezoelectrics for MEMS. Journal of Electroceramics 12, 7–17 (2004). https://doi.org/10.1023/B:JECR.0000033998.72845.51

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JECR.0000033998.72845.51

Navigation