Skip to main content
Log in

6061 Al reinforced with zirconium diboride particles processed by conventional powder metallurgy and mechanical alloying

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The homogenous distribution of the reinforcement phase is an essential condition for a composite material to achieve its superior performance. Powder metallurgy (PM) can produce metal matrix composites in a wide range of matrix reinforcement compositions without the segregation phenomena typical of casting processes. Particularly, mechanical alloying can be used to mix the matrix and reinforcement particles, enhancing the homogeneity of the reinforcement distribution. This work investigates the production of aluminium 6061 reinforced with zirconium diboride by mechanical alloying followed by cold pressing and hot extrusion, and compares the results with the same composite produced by conventional PM and hot extrusion. The incorporation of the ZrB2 particles produces only a small increase in the material hardness, but a small decrease in the UTS when conventional PM is employed. Mechanical alloying breaks the reinforcement particle clusters, eliminates most of the cracks present in the surface of the reinforcement particles, decreases its size and improves its distribution. This enhancement of the composite structure, in addition to the metallurgical aspects promoted by mechanical alloying in the matrix, brings approximately 100% improvements in the composite UTS and hardness, compared with the composites obtained by PM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. V. Foltz, Adv. Mater. Process 154 (1998) 19.

    Google Scholar 

  2. J. Boselli, P. D. Pitcher, P. J. Gregson and I. Sinclair, Mater. Sci. Eng. A 300 (2001) 113.

    Google Scholar 

  3. V. V. Bhanuprasad, R. B. V. Bhat, A. K. Kuruvilla, K. S. Prasad, A. B. Pandey and Y. Mahajan, Int. J. Powder Metall. 27 (1991) 227.

    Google Scholar 

  4. M. K. Jain, V. V. Bhanuprasad, S. V. Kamat, A. B. Pandey, V. K. Varma, B. V. R. Bhat and Y. R. Mahajan, ibid. 29 (1993) 267.

    Google Scholar 

  5. K. Hanada, Y. Murakoshi, H. Negishi and T. Sano, J. Mater. Process. Tech. 63 (1997) 405.

    Google Scholar 

  6. M. J. Tan and X. Zhang, Mater. Sci. Eng. A 244 (1998) 80.

    Google Scholar 

  7. A. N. Tiwari, V. Gopinathan and P. Ramakrishnan, Mater. Manuf. Process. 6 (1991) 621.

    Google Scholar 

  8. J. Lee, S. Kim, C. Park and C. Bae, J. Mater. Process. Manuf. 4 (1995) 55.

    Google Scholar 

  9. L. Lu, M. O. Lai and S. Zhang, Key Eng. Mater. 104–107 (1995) 111.

    Google Scholar 

  10. K. Hanada, K. A. Khor, M. J. Tan, Y. Murakoshi, H. Negishi and T. Sano, J. Mater. Process. Tech. 67 (1997) 8.

    Google Scholar 

  11. L. Lu, M. O. Lai and C. W. Ng, Mater. Sci. Eng. A 252 (1998) 203.

    Google Scholar 

  12. E. M. Ruiz-Navas, C. E. Costa, J. M. Ruizroman, L. E. G. Cambronero and J. M. Ruizprieto, in Proceedings of the Powder Metallurgy World Congress and Exhibition (Granada, Spain, 1998) Vol. 5, p. 146.

    Google Scholar 

  13. O. Gingu, M. Rosso and G. Ubertalli, in Proceedings of the Powder Metallurgy World Congress and Exhibition (Granada, Spain, 1998) Vol. 5, p. 162.

    Google Scholar 

  14. L. Lu and M. O. Lai, in “Mechanical Alloying” (Kluwer Academic Publishers, 1998) p. 165.

  15. C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1.

    Google Scholar 

  16. J. M. Torralba, C. E. Da Costa and F. Velasco, J. Mater. Process. Tech. 133 (2003) 203.

    Google Scholar 

  17. M. Lieblich, J. L. GonzÁlez-Carrasco and G. Caruana, Intermetallics 5 (1997) 515.

    Google Scholar 

  18. V. AmigÓ and V. J. L. Ortiz, Scripta Mater. 42 (2000) 383.

    Google Scholar 

  19. J. B. Fogagnolo, F. Velasco, M. H. Robert and J. M. Torralba, Mater. Sci. Eng. A 342 (2003) 131.

    Google Scholar 

  20. J. B. Fogagnolo, E. M. Ruiz-Navas, M. H. Robert and J. M. Torralba, Scripta Mater. 47 (2002) 243.

    Google Scholar 

  21. S. K. M. Pathak, S. Das, S. K. Das and P. Ramachandrarao, J. Mater. Res. 15 (2000) 2499.

    Google Scholar 

  22. F. Monteverde, S. Guicciardi and A. Bellosi, Mater. Sci. Eng. A 346 (2003) 310.

    Google Scholar 

  23. J. S. Benjamin and T. E. Volin, Metall. Trans. 5 (1974) 1929.

    Google Scholar 

  24. J. B. Fogagnolo, E. M. Ruiz-Navas, M. H. Robert and J. M. Torralba, J. Mater. Sci. 37 (2002) 4603.

    Google Scholar 

  25. E. Hochreiter, C. Kowanda and B. Orter, in Proceedings of the 3rd European Association for Composite Materials and Processes, Editions de Physique Les Ulis (1993) Vol. 3, p. 1829.

    Google Scholar 

  26. Y. L. Shen, E. Fishencord and N. Chawla, Scripta Mater. 42 (2000) 427.

    Google Scholar 

  27. C. H. CÁceres and W. J. Poole, Mater. Sci. Eng. A 332 (2002) 311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fogagnolo, J.B., Robert, M.H., Ruiz-Navas, E.M. et al. 6061 Al reinforced with zirconium diboride particles processed by conventional powder metallurgy and mechanical alloying. Journal of Materials Science 39, 127–132 (2004). https://doi.org/10.1023/B:JMSC.0000007736.03608.e5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000007736.03608.e5

Keywords

Navigation