Skip to main content
Log in

Electrophoretic deposition—mechanisms, myths and materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Explanations of the deposition process during electrophoretic deposition (EPD) are presented and their boundary conditions discussed. It is suggested increasing resistance during EPD is due to the deposit and not dilution of current carrying species in the suspension. Dialysis membrane experiments demonstrate ions carry significant current. Side-effects of two suspension-conditioning agents are described, i.e., TMAH and PEI. The former can induce “aging” in suspension as its surface adsorption varies with time and reduces suspension pH. PEI appears to adsorb on all ceramic and metal powders, so may be a universal EPD agent for stoichiometric deposition of ceramic/ceramic and ceramic/metal powder-mixtures. Novel structures produced by EPD are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Bose, Phil. Trans. Roy. Soc. 43 (1745) 419.

    Google Scholar 

  2. J. J. Shyne and H. G. Scheible, “Modern Electroplating,” edited by P. A. Lowenheim (John Wiley and Sons, New York, 1963) p. 714.

    Google Scholar 

  3. O. O. Van Der Biest and L. Vandeperre, Ann. Rev. Mater. Sci. 29 (1999) 327.

    Google Scholar 

  4. I. Zhitomirsky, Adv. in Coll. Int. Sci. 97 (2002) 279.

    Google Scholar 

  5. F. Grillion, D. Fayeulle and M. Jeandin, J. Mater. Sci. Lett. 11 (1992) 272.

    Google Scholar 

  6. D. R. Brown and F. W. Salt, J. App. Chem. 15 (1963) 40.

    Google Scholar 

  7. H. Koelman, Philips Res. Rep. 10 (1955) 161.

    Google Scholar 

  8. P. Sarkar and P. S. Nicholson, J. Amer. Ceram. Soc. 79(8) (1996) 1987.

    Google Scholar 

  9. D. De and P. S. Nicholson, ibid. 82(11) (1999) 3031.

    Google Scholar 

  10. H. C. Hamaker and E. J. W. Verwey, Trans. Faraday Soc. 36 (1940) 180.

    Google Scholar 

  11. L. Vanderperre, Ph.D. thesis, Katholieke University, Leuven, Belgium, 1998.

  12. P. Sarkar, X. Huang and P. S. Nicholson, Ceram. Eng. Sci. Proc. 14 (1993) 707.

    Google Scholar 

  13. J. Zhang and B. I. Lee, J. Amer. Ceram. Soc. 83(10) (2000) 2417.

    Google Scholar 

  14. R. Moreno and B. Ferrari, Mater. Res. Bull. 35 (2000) 887.

    Google Scholar 

  15. F. Tang, T. Uchikoshi, K. Ozawa and Y. Sakka, ibid. 37 (2002) 653.

    Google Scholar 

  16. T. Uchikoshi, in Proc. V. Meeting on Electrophoretic Deposition for Ceramics, Japan (2001) p. 17.

  17. A. J. Aldykiewicz, Jr., A. J. Davenport and H. S. Isaacs, J. Electrochem. Soc. 143 (1996) 1.

    Google Scholar 

  18. T. Uchikoshi, K. Ozawa, B. D. Hatton and Y. Sakka, J. Mater. Res. 16 (2001) 2.

    Google Scholar 

  19. P. M. Biesheuvel and H. Verweij, J. Amer. Ceram. Soc. 82(6) (1999) 1451.

    Google Scholar 

  20. E. De Beer, J. Duval and E. A. Meulenkamp, J. Coll. Int. Sci. 222 (2000) 117.

    Google Scholar 

  21. N. Yamada, H. Shoji, Y. Kubo and S. Katayama, J. Mater. Sci. 37 (2002) 2071.

    Google Scholar 

  22. G. Wang, P. Sarkar and P. S. Nicholson, J. Amer. Ceram. Soc. 82(4) (1999) 849.

    Google Scholar 

  23. G. Wang and P. S. Nicholson, J. Amer. Ceram. Soc. 84(6) (2001) 1250.

    Google Scholar 

  24. P. S. Nicholson, J. Amer. Ceram. Soc. 80(4) (1997) 965.

    Google Scholar 

  25. P. S. Nicholson, J. Amer. Ceram. Soc. 84(9) (2001) 1977.

    Google Scholar 

  26. Y. Fukada and P. S. Nicholson, J. Mater. Res. 18(1) (2003) 2945.

    Google Scholar 

  27. R. J. Hunter, “Introduction to Modern Colloid Science (Oxford Science Publications, p. 1992).

  28. L. BergstrÖm and E. Bostedt, Coll. Surf. A. 49 (1990) 183.

    Google Scholar 

  29. E. Laarz, B. V. Zhmud and L. BergstrÖm, J. Amer. Ceram. Soc. 83(10) (2000) 2394.

    Google Scholar 

  30. J. Widegren and L. BergstrÖm, J. Euro. Ceram. Soc. 20 (2000) 659.

    Google Scholar 

  31. Fukada and P. S. Nicholson, J. Amer. Ceram. Soc. 85(12) (2002) 45.

    Google Scholar 

  32. A. Borner and R. Herbig, Coll. Surf. A 159 (1999) 439.

    Google Scholar 

  33. A. Borner, R. Herbig, M. Mangler and G. Tomandl, Mater. Sci. For. 308–311 (1999) 89.

    Google Scholar 

  34. K. Yamashita, M. Nagai and T. Umegaki, J. Mater. Sci. 32 (1997) 6661.

    Google Scholar 

  35. M. Nagai, K. Yamashita, T. Umegaki and Y. Tamuka, J. Amer. Ceram. Soc. 76 (1993) 253.

    Google Scholar 

  36. P. Sarkar, X. Huang and P. S. Nicholson, ibid. 76 (1993) 1055.

    Google Scholar 

  37. B. V. Derjaguin, Discuss. Faraday Soc. 18 (1954) 85.

    Google Scholar 

  38. R. Hogg, T. W. Healy and D. W. Fuerstenau, Trans. Faraday Soc. 62 (1966) 1638.

    Google Scholar 

  39. S. N. Sidorov, L. M. Bronstein, P. M. Valetsky, J. Hartmann, H. Colfen, H. Schnablegger and M. Antonietti, J. Coll. Interf. Sci. 212 (1999) 197.

    Google Scholar 

  40. J. Sindel, N. S. Bell and W. M. Sigmund, J. Amer. Ceram. Soc. 82(11) (1999) 2953.

    Google Scholar 

  41. C. R. Dick and G. E. Ham, J. Macromol. Sci. Chem. A 4, (1970) 1301.

    Google Scholar 

  42. K. Hasegawa, M. Tatsumisago and T. Minami, J. Ceram. Soc. Jpn 105(7) (1997) 569.

    Google Scholar 

  43. A. Dietrich and A. Neubrand, ibid. 84(4) (2001) 806.

    Google Scholar 

  44. F. Tang, T. Uchikoshi and Y. Sakka, ibid. 85(9) (2002) 2161.

    Google Scholar 

  45. T. Uchikoshi, T. Hisashige and Y. Sakka, J. Ceram. Soc. Jpn 110(9) (2002) 840.

    Google Scholar 

  46. H. A. Ketelson, R. Pelton and M. A. Brook, J. Coll. Interf. Sci. 179 (1996) 600.

    Google Scholar 

  47. V. J. Laraia and A. H. Heuer, J. Amer. Ceram. Soc. 72(11) (1989) 2177.

    Google Scholar 

  48. M. Bissinger, M.S. thesis, McMaster University, Hamilton, Canada, 1995.

  49. B. Hatton and P. S. Nicholson, J. Amer. Ceram. Soc. 84(3) (2001) 571.

    Google Scholar 

  50. P. Sarkar, S. Datta and P. S. Nicholson, Composites, Part B. 28B (1997) 49.

    Google Scholar 

  51. T. Uchikoshi, T. S. Suzuki, H. Okuyama, Y. Sakka and P. S. Nicholson, J. Europ. Ceram. Soc. in press.

  52. H. Schneider, K. Okada and J. Pask, “Mullite and Mullite Ceramics” (John Wiley & Sons, 1994).

  53. K. K. Chawla, “Ceramic Matrix Composites” (Chapman & Hall, 1993).

  54. C. Kaya, A. R. Boccaccini and K. K. Chawla, J. Amer. Ceram. Soc. 83 (2000) 1885.

    Google Scholar 

  55. C. Kaya, A. R. Boccaccini and P. A. Trusty, J. Euro. Ceram. Soc. 19 (1999) 2859.

    Google Scholar 

  56. W. S. Westby, S. Kooner, P. M. Farries, P. Boother and R. A. Shatwell, J. Mater. Sci. 34 (1999) 5021.

    Google Scholar 

  57. S. Kooner, W. S. Westby, C. M. A. Watson and P. M. Farries, J. Euro. Ceram. Soc. 20 (2000) 631.

    Google Scholar 

  58. C. Kaya and A. R. Boccaccini, J. Mater. Sci. Lett. 20 (2001) 1465.

    Google Scholar 

  59. M. D. Petry and T. Mah, J. Amer. Ceram. Soc. 82(10) (1999) 2801.

    Google Scholar 

  60. C. Kaya, P. A. Trusty and C. B. Ponton, British Ceram. Trans. 97 (1998) 48.

    Google Scholar 

  61. C. Kaya, X. Gu, I. Al-Dawery and E. G. Butler, Sci. Tech. Adv. Mat. 3 (2002) 35.

    Google Scholar 

  62. H. S. Kim and P. S. Nicholson, J. Amer. Ceram. Soc. 85 (2002) 1730.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukada, Y., Nagarajan, N., Mekky, W. et al. Electrophoretic deposition—mechanisms, myths and materials. Journal of Materials Science 39, 787–801 (2004). https://doi.org/10.1023/B:JMSC.0000012906.70457.df

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000012906.70457.df

Keywords

Navigation