Skip to main content
Log in

Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hypersonic flight involves extremely high velocities and gas temperatures with the attendant necessity for thermal protection systems (TPS). New high temperature materials are needed for these TPS systems. A systematic investigation of the thermodynamics of potential materials revealed that low oxidation rate materials, which form pure scales of SiO2, Al2O3, Cr2O3, or BeO, cannot be utilized at temperatures of 1800°C (and above) due to disruptively high vapor pressures which arise at the interface of the base material and the scale. Vapor pressure considerations provide significant insight into the relatively good oxidation resistance of ZrB2- and HfB2-based materials at 2000°C and above. These materials form multi-oxide scales composed of a refractory crystalline oxide (skeleton) and a glass component, and this compositional approach is recommended for further development. The oxidation resistance of ZrB2-SiC and other non-oxide materials is improved, to at least 1600°C, by compositional modifications which promote immiscibility in the glass component of the scale. Other candidate materials forming high temperature oxides, such as rare earth compounds, are largely unexplored for high temperature applications and may be attractive candidates for hypersonic TPS materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. LEVINSTEIN, in Proceedings of Metallurgical Society Conference on Refractory Metals and Alloys, Chicago, April 1962, edited by M. Semchysen and I. Perlmutter (Interscience Publishers, New York, London, 1963) p. 269.

    Google Scholar 

  2. “High-Temperature Inorganic Coatings,” edited by J. Huminik (Reinhold, New York, 1963).

  3. “Coatings of High-Temperature Materials,” edited by H. H. Hausner (Plenum, New York, 1966).

  4. “Protective Coatings on Metals,” edited by G. V. Samsonov, English Translation (Consultants Bureau, New York, 1969) Vol. 1.

  5. “Protective Coatings on Metals,” edited by G. V. Samsonov, English Translation (Amerind, New Delhi, 1984) Vol. 6.

  6. C. M. PACKER, in “Oxidation of High-Temperature Intermetallics,” edited by T. Grobstein and J. Doychak (TMS, 1988) p. 235.

  7. G. H. MEIER, in “Oxidation of High-Temperature Intermetallics,” edited by T. Grobstein and J. Doychak (TMS, 1988) p. 1.

  8. T. GROBSTEIN and J. DOYCHAK (eds.), “Oxidation of High-Temperature Intermetallics” (TMS, 1988).

  9. K. J. ZEITSCH and J. M. CRISCIONE, Technical Report WADD TR 61-72, Vol. XXX, AFML WPAFB, April 1964.

  10. D. A. SCHULZ et al.,Technical Report WADD TR 61-72, Vol. XXXIV, AFML WPAFB, July 1964.

  11. D. A. KRIVOSHEIN et al., Sov. Powd. Met. Met. Cer. 6 (1978) 460.

    Google Scholar 

  12. R. KIESSLING, Acta Chem. Scand. 4 (1950) 160.

    Google Scholar 

  13. B. POST et al., Acta Met. 2 (1954) 20.

    Google Scholar 

  14. R. STEINITZ et al., Trans. AIME, J. Metals 4 (1952) 983.

    Google Scholar 

  15. L. KAUFMAN and E. CLOUGHERTY, Technical Report RTD-TDR-63-4096, Part 1, AFML, WPAFB, OH, Dec. 1963.

  16. L KAUFMAN and E. CLOUGHERTY, Technical Report RTD-TDR-63-4096, Part 2, AFML, WPAFB, OH, Feb. 1965.

  17. E. V. CLOUGHERTYet al., in Proceedings of the 15th SAMPE Symposium, Vol. 15 (1969) p. 297.

    Google Scholar 

  18. J. R. FENTER, SAMPE Quar. 2 (1971) 1.

    Google Scholar 

  19. E. V. CLOUGHERTY et al., Technical Report AFML-TR-68-190, AFML, WPAFB, OH, July 1968.

  20. E. V. CLOUGHERTY et al., Trans. AIME 242 (1968) 1077.

    Google Scholar 

  21. L. KAUFMAN and H. NESOR, Technical Report AFML-69-84, AFML, WPAFB, OH, March 1970.

  22. L. A. MCCLAINE (ed.), Technical Report ASD-TDR-62-204, AFML, WPAFB, OH, 1962–1964.

  23. J. B. BERKOWITZ-MATTUCK, Technical Report ASD-TDR-62-203, AFML, WPAFB, OH, 1962/1963.

  24. P. T. B. SHAFFER, Cer. Bull. 41 (1962) 96.

    Google Scholar 

  25. H. PASTOR and R. MEYER, Rev. Int. Htes Temp. et Refract. II (1974) 41.

    Google Scholar 

  26. V. A. LAVRENKO, et al., Sov. Powd. Met. and Met. Cer. 21 (1982) 471.

    Google Scholar 

  27. L. A. MCCLAINE (ed.), Technical Report ASD-TDR-62-204, Part II, AFML, WPAFB, OH, May 1963.

  28. F. H. BROWN, Progress Report No. 20-252, Jet Propulsion Laboratory, Pasadena, CA, 25 Feb 1955.

  29. A. K. KURIAKOSE and J. L. MARGRAVE, J. Electrochem. Soc. 111 (1964) 827.

    Google Scholar 

  30. J. B. BERKOWITZ-MATTUCK, ibid. 113 (1966) 908.

    Google Scholar 

  31. L. A. MCCLAINE (ed.), Technical Report ASD-TDR-62-204, Part III, AFML, WPAFB, OH, April 1964.

  32. L. KAUFMAN et al., Trans. AIME 239 (1967) 458.

    Google Scholar 

  33. H. C. GRAHAM et al., in “Ceramics in Severe Environments,” edited by W. W. Kriegel and H. Palmour (Plenum Press, NY, 1971).

    Google Scholar 

  34. W. C. TRIPP and H. C. GRAHAM, Solid State Science, 118 (1971) 1195.

    Google Scholar 

  35. R. F. VOITOVICH and E. A. PUGACH, Sov. Powd. Met. Met. Cer. 147 (1975) 70.

    Google Scholar 

  36. E. I. GOLOVKO and R. F. VOITOVICH, ibid. 190 (1978) 77.

    Google Scholar 

  37. A. LEBUGLE and C. MENTEL, Rev. int. Htes. Temp. et Refract. 11 (1974) 321.

    Google Scholar 

  38. J. W. HINZE et al., J. Electrochem. Soc. 122 (1975) 1249.

    Google Scholar 

  39. W. C. TRIPP et al., Ceram. Bull. 52 (1973) 612.

    Google Scholar 

  40. M. C. JISCHKE, Proc. Okla. Acad. Sci. 53 (1973) 81.

    Google Scholar 

  41. E. V. CLOUGHERTYet al., in Proceedings of the 15th National SAMPE Symposium (1969) Vol. 15, p. 297.

    Google Scholar 

  42. L. KAUFMAN, in Proceedings of AIAA Advanced Space Transportation Meeting (AIAA, NY, 1970) Paper 70-278.

    Google Scholar 

  43. J. D. BUCKLEY, Technical Report NASA TN D-4231, NASA, Wash DC, Oct. 1967.

  44. M. L. HILL, in Proceedings of the AIAA/ASME 8th Conference on Structures, Structural Dynamics, and Materials (AIAA, NY, 1967) p. 248.

    Google Scholar 

  45. D. R. GASKELL, in “Introduction to Metallurgical Thermodynamics” (Hemisphere, New York, 1981).

    Google Scholar 

  46. C. H. P. LUPIS, in “Chemical Thermodynamics of Materials” (Elsevier, New York, 1983).

    Google Scholar 

  47. “Thermodynamics of Certain Refractory Compounds,” edited by H. Schick (Academic Press, New York and London, 1966) Vol. II.

  48. “JANAF Thermochemical Tables,” 2nd ed., edited by D. R. Stull and H. Prophet (U.S. Dept. of Commerce, National Bureau of Standards, Washington D. C., 1971).

  49. L. B. PANKRATZ, “Thermodynamic Properties of Elements and Oxides”, Bulletin 672 (U.S. Dept. of the Interior, Bureau of Mines, 1982).

  50. O. KNACKE et al., in “Thermochemical Properties of Inorganic Substances” (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  51. M. S. CHANDRASEKHARAIAHet al., J. Less-Common Met. 80 (1981) 9.

    Google Scholar 

  52. A. OLIVEI, ibid. 29 (1972) 11.

    Google Scholar 

  53. H. JEHN et al., ibid. 100 (1984) 321.

    Google Scholar 

  54. P. KOFSTAD, “High-Temperature Oxidation of Metals” (John Wiley & Sons, Inc., New York, London, Sydney, 1966).

    Google Scholar 

  55. C. T. SIMS et al., Trans. AIME (1955) 168.

  56. C. T. SIMS et al., Technical Report WADC 56-319 ASTIA Document 110596 (1956).

  57. W. W. SMELTZER and M. T. SIMNAD, Acta Metallurgica 6 (1957) 328.

    Google Scholar 

  58. R. E. PAWEL and J. J. CAMPBELL, J. Electrochem. Soc. 128 (1981) 1999.

    Google Scholar 

  59. B. E. DEAL and A. S. GROVE, J. Appl. Phys. 36 (1965) 3770.

    Google Scholar 

  60. C. S. GIGGINS and F. S. PETTIT, J. Electrochem. Soc. 118 (1971) 1782.

    Google Scholar 

  61. W. C. HAGEL, Trans. ASM 56 (1963) 583.

    Google Scholar 

  62. J. BOOKER, R. M. PAINE and A. J. STONEHOUSE, Technical Report WADD TR 60-889 (1961).

  63. J. BOOKER, R. M. PAINE and A. J. STONEHOUSE, Technical Report WADD TR 60-889 (1962).

  64. R. M. PAINE, A. J. STONEHOUSE and W. W. BEAVER, Corrosion 20 (1964) 307.

    Google Scholar 

  65. N. S. JACOBSON, J. Amer. Ceram. Soc. 76 (1993) 3.

    Google Scholar 

  66. J. R. STRIFE and J. E. SHEEHAN, Cer. Bull. 67 (1988) 369.

    Google Scholar 

  67. H. H. KELLOGG, Trans. Met. Soc. AIME 236 (1966) 602.

    Google Scholar 

  68. E. A. GULBRANSEN and S. A. JANSSON, in “Oxidation of Metals and Alloys” (ASM, Metals Park, OH, 1971) p. 63.

    Google Scholar 

  69. C. WAGNER, J. Appl. Phys. 29 (1958) 1295.

    Google Scholar 

  70. V. L. K. LOU, T. E. MITCHELL and A. H. HEUER, J. Amer. Ceram. Soc. 68 (1985) 49.

    Google Scholar 

  71. A. H. HEUER and V. L. K. LOU, ibid. 73 (1990) 2789.

    Google Scholar 

  72. E. A. GULBRANSEN, K. F. ANDREW and F. A. BRASSART, J. Electrochem. Soc. 113 (1966) 834.

    Google Scholar 

  73. G. R. ST PIERRE, in Proceedings of Conference on Gas-Solid Reactions in Pyrometallurgy, Purdue U., April 1986.

  74. J. W. HINZE and H. C. GRAHAM, J. Electrochem. Soc. 123 (1976) 1066.

    Google Scholar 

  75. G. H. SCHIROKY, Adv. Ceram. Matls. 2 (1987) 137.

    Google Scholar 

  76. W. L. VAUGHN and H. G. MAAHS, J. Amer. Ceram. Soc. 73 (1990) 1540.

    Google Scholar 

  77. G. H. MEIER, in “Oxidation of High-Temperature Intermetallics,” edited by T. Grobstein and J. Doychak (TMS, 1988) p.1.

  78. D. CAPLAN and G. I. SPROULE, Oxidation of Metals 9 (1975) 459.

    Google Scholar 

  79. R. A. RAPP, High Temperature Corrosion, ACS Course Notes, ACS, 1980, 60.

  80. Z. ZHENG et al., J. Electrochem. Soc. 137 (1990) 854.

    Google Scholar 

  81. Z. ZHENG et al., ibid. 137 (1990) 2812.

    Google Scholar 

  82. L. KAUFMAN and H. NESOR, Technical Report AFML-69-84, Pt. III, Vol. III, AFML, WPAFB, OH, March 1970.

  83. L. KAUFMAN and E. CLOUGHERTY, Technical Report RTD-TDR-63-4096, Part 2, AFML, WPAFB, OH, Feb. 1965.

  84. I. G. TALMY, J. A. ZAYKOSKI and M. M. OPEKA Ceram. Eng. Sci. Proc. 19 (1998) 105.

    Google Scholar 

  85. W. W. WEYL and E. C. MARBOE, in “The Constitution of Glasses—A Dynamic Interpretation” (Interscience, New York, 1962) p. 618.

    Google Scholar 

  86. R. TURCOTTE et al.,Technical Report WL-TR-91-4059, AFML, WPAFB, OH, March 1992.

  87. E. L. COURTWRIGHT et al., Technical Report WL-TR-91-4061, AFML, WPAFB, OH, Sept. 1992.

  88. Unpublished data.

  89. J. S. EVANGELIDES, Unpublished materials analyses.

  90. J. B. BERKOWITZ-MATTUCK, Technical Report ASD-TDR-62-203 Part II, AFML, WPAFB, OH, March 1963.

  91. C. B. BARGERON and R. C. BENSON, Surf. Coat. Tech. 36 (1988) 111.

    Google Scholar 

  92. C. B. BARGERON et al., JHU APL Tech. Digest 14 (1193) 29.

    Google Scholar 

  93. J. HENNEY and J. W. S. JONES, in “Special Ceramics 1964,” edited by P. Popper (Academic Press, London and NewYork, 1965) p. 35.

    Google Scholar 

  94. V. A. ZHILYAEV et al., Sov. Powd. Met. Met. Cer. 11 (1972) 632.

    Google Scholar 

  95. R. F. VOITOVICH and E. A. PUGACH, ibid. 12 (1973) 916.

    Google Scholar 

  96. E. J. WUCHINA and M. M. OPEKA, J. Electrochem. Soc. 99(38) (2000) 477.

    Google Scholar 

  97. G. R. HOLCOMB, “The High Temperature Oxidation of Hafnium Carbide,” Ph.D. Thesis, Ohio State University, 1988.

  98. E. L. COURTRIGHT et al., Oxidation of Metals 36 (1991) 423.

    Google Scholar 

  99. I. G. TALMY et al., in Proceedings of the International Symposium on “High Temperature Corrosion and Materials Chemistry III,” edited by M. McNallan and E. Opila (The Electrochemical Society, Inc., Pennington, NJ, 2001) Vol. 2001–12, p. 144.

    Google Scholar 

  100. W. VOGEL, “Glass Chemistry,” 2nd ed. (Springer-Verlag, New York, 1994).

    Google Scholar 

  101. P. W. ATKINS, in “Physical Chemistry” (Oxford University Press, 1978).

  102. F. P. GLASSER, I. WARSHAW and R. ROY, Phys. Chem. Glass. l (1960) 139.

    Google Scholar 

  103. B. G. VARSHAL, Glass Phys. Chem. 19 (1993) 1.

    Google Scholar 

  104. J. A. ZAYKOSKI et al., FY 2000 NSWC Res. Digest (2000) 95.

  105. M. W. BARSOUM and T. EL-RAGHY, J. Amer. Ceram. Soc. 79 (1996) 1953.

    Google Scholar 

  106. J. FRYT and L. STOBIERSKI, Trans Tech Pubs., Switzerland, (1997) p. 1608.

  107. N. F. GAO, MIYAMOTO and D. ZHANG, J. Mater. Sci. 18 (1999) 4385.

    Google Scholar 

  108. I. G. TALMY et al., in Proceedings of the International Symposium on “High Temperature Corrosion and Materials Chemistry IV,” edited by E. Opila, P. Hou, T. Maruyama, D. Shifler and E. Wuchina (The Electrochemical Society, Inc., Pennington, NJ, 2003) Vol. 2003–16, p. 361.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opeka, M.M., Talmy, I.G. & Zaykoski, J.A. Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience. Journal of Materials Science 39, 5887–5904 (2004). https://doi.org/10.1023/B:JMSC.0000041686.21788.77

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000041686.21788.77

Keywords

Navigation