Skip to main content
Log in

Oxidation mechanisms and kinetics of SiC-matrix composites and their constituents

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The oxidation kinetics and mechanisms of SiC-matrix composites fabricated by chemical vapor infiltration, and of their constituents (C or SiC-fibers, C or BN interphases and SiC matrix) are studied on the basis of an experimental approach and modelling. The oxidation of carbon fibers is rate-controlled by a combined diffusion/chemical reaction mechanism at low temperatures and its rate reduced by a 1600°C heat treatment. The oxidation rate of the pyrocarbon is similar to that of the fibers when they have been heat-treated. The oxidation kinetics of both the SiC-based fibers and matrix are parabolic and assumed to be rate-limited by the diffusion of gaseous species in the silica scale. A full kinetics law is given. The occurrence of water in the atmosphere increases the oxidation rate of the fibers and decreases the activation energy, water becoming the main oxidizing agent. The oxidation of the BN-interphase is complex and strongly anisotropic, its kinetics depending on composition, structure and texture. Finally, the oxidation of SiC-matrix composites, depicted for 1D-SiC/C/SiC and 2D-C/C/SiC composites, involves both diffusion of gaseous species in the composite porosity and heterogeneous oxidation reactions. Oxidation occurs through the thickness of the composites at low temperatures which consumes the carbon-based constituents. Conversely, it tends to be limited to near the composite surface at high temperatures, due to the formation of silica-based phases healing the material porosity and preventing the in-depth oxidation of the carbon-based constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Naslain,in“The Art of Ceramics: The Blend of Art and Science in Technology,” edited by N. Claussen, Discussions of the Academy of Ceramics, Forum 2000 (Techna, Faenza, 2001) p. 13.

    Google Scholar 

  2. Idem., Composites Part A 29A (1998) 1145.

    Article  Google Scholar 

  3. Idem., Comp. Sci. Techn. 64 (2004) 155.

    Article  Google Scholar 

  4. L. Filipuzzi, “Oxidation of SiC/SiC Composites and Their Con-stituents: Experimental Approach, Modelling and Effect on the Mechanical Behavior,” PhD Thesis no 593, Univ. Bordeaux 1, March 29, 1991.

  5. F. Lamouroux, “Behavior of 2D C/SiC Composites in an Ox-idizing Environment,” PhD Thesis no 860, Univ. Bordeaux 1, Dec. 8, 1992.

  6. S. Le Gallet, “The Multilayered Boron Nitride Interphase in SiC/SiC Thermostructural Composites,” PhD Thesis no 2476, Univ. Bordeaux 1, Dec. 19, 2001.

  7. R. Naslain, A. Guette, F. Lamouroux, G. Camus, C. Labrugere, L. Filipuzzi and J. Thebault,in Proc. 10th Intern. Conf. Composite Mater. (ICCM-10), edited by A. Poursartip and K. Street (Woodhead Publ., Ltd., Abington/Cambridge, 1995) vol. 4, p. 759.

    Google Scholar 

  8. R. Naslain,in “Advanced Inorganic Fibers,” edited by F. T. Wallenberger (Kluwer Academic Publishers, Boston, 2000) p. 265.

    Google Scholar 

  9. S.-M. Dong, G. Chollon, C. Labrugere, M. Lahaye, A. Guette, J. L. Bruneel, M. Couzi, R. Naslain and D.-L. Jiang, J. Mater. Sci. 36(10) (2001) 2371.

    Article  Google Scholar 

  10. R. Naslain and F. Langlais,“Mater. Sci. Res.” (Plenum Press, New York, 1986), vol. 20, p. 145.

    Google Scholar 

  11. F. Rebillat, “Properties of the Interfaces and Interphases in Ceramic Matrix Composites,” PhD Thesis no 1397, Univ. Bordeaux 1, Jan. 24, 1996.

  12. R. Naslain, O. Dugne, A. Guette, J. Sevely, C. Robin-Brosse, J. P. Rocher and J. Cotteret, J. Amer. Ceram. Soc. 74 (1991) 2482.

    Article  Google Scholar 

  13. F. Loumagne, F. Langlais and R. Naslain, J. Cryst. Growth 155 (1995) 198.

    Article  Google Scholar 

  14. R. Naslain, J. Lamon, R. Pailler, X. Bourrat, A. Guette and F. Langlais, Comp. Part A: Appl. Sci. 30(4) (1999) 537.

    Article  Google Scholar 

  15. C. Louchet-Pouillerie, P. Diss, D. Barriere, J. C. Cavalier, F. Rebillat, A. Guette and R. Naslain, Extended Abstract, GFC-Meeting, 20–27 March 2001, Saint-Etienne, France (in French).

  16. F. Lamouroux, X. Bourrat, R. Naslain and J. Sevely, Carbon 31 (1993) 1273.

    Article  Google Scholar 

  17. H. Marsh and K. Kuo,in“Introduction to Carbon Science,” edited by H. Marsh (Butterworths, London, 1989) p. 107.

    Google Scholar 

  18. M. K. Ismail, Carbon 29(6) (1991) 777.

    Article  Google Scholar 

  19. Y. T. Zhu, S. T. Taylor, M. G. Stout, D. P. Butt and T. C. Lowe, J. Amer. Ceram. Soc. 81(31) (1998) 655.

    Google Scholar 

  20. L. Filipuzzi and R. naslain,inMater. Sci. Monographs 68 “Advanced Structural Inorganic Composites,” edited by P. Vincenzini (Elsevier, Amsterdam, 1991) p. 35.

    Google Scholar 

  21. T. Shimoo, Y. Morisada and K. Okamura, J. Amer. Ceram. Soc. 83(12) (2000) 3049.

    Google Scholar 

  22. G. Chollon, C. Laporte, R. Pailler, R. Naslain, F. Laanani, M. Monthioux and P. Olry, J. Mater. Sci. 32 (1997) 327.

    Article  Google Scholar 

  23. T. Shimoo, F. Toyoda and K. Okamura, ibid. 35 (2000) 3301.

    Article  Google Scholar 

  24. T. Shimoo, Y. Morisada and K. Okamura, ibid. 37 (2002) 4361.

    Article  Google Scholar 

  25. T. Shimoo, H. Takeuchi, M. Takeda and K. Okamura, J. Ceram. Soc. Jpn. 108(12) (2000) 1096 (in Japanese).

    Google Scholar 

  26. B. E. Deal and A. S. Grove, J. Appl. Phys. 36(12) (1965) 3770.

    Article  Google Scholar 

  27. L. Filipuzzi, R. Naslain and C. Jaussaud, J. Mater. Sci. 17 (1992) 3330.

    Article  Google Scholar 

  28. J. A. Costello and R. E. Tressler, J. Amer. Ceram. Soc. 69(9) (1986) 674.

    Article  Google Scholar 

  29. Z. Zheng, R. E. Tressler and K. E. Spear, J. Electrochem. Soc. 137(3) (1990) 854.

    Google Scholar 

  30. Idem., ibid. 137(9) (1990) 2812.

    Google Scholar 

  31. R. C. A. Harris, J. Amer. Ceram. Soc. 58(1/2) (1975) 7.

    Google Scholar 

  32. N. Jacobson, S. Farmer, A. Moore and H. Sayir, ibid. 82(2) (1999) 393.

    Google Scholar 

  33. N. S. Jacobson, G. N. Morscher, D. R. Bryant and R. E. Tressler, ibid. 82(6) (1999) 1473.

    Google Scholar 

  34. K. Oda and T. Yoshio, J. Mater. Sci. 28 (1993) 6562.

    Article  Google Scholar 

  35. F. Rebillat, S. Le Gallet, A. Guette, X. Bourrat and R. Naslain,in“High Temperature Ceramic Matrix Composites,” edited by W. Krenkel et al. (Wiley-VCH, Weinheim, 2001) p. 193.

    Google Scholar 

  36. L. Filipuzzi, G. Camus, R. Naslain and J. Thebault, J. Amer. Ceram. Soc. 77(2) (1994) 459.

    Article  Google Scholar 

  37. L. Filipuzzi and R. Naslain, ibid. 77(2) (1994) 467.

    Article  Google Scholar 

  38. F. Lamouroux, G. Camus, R. Naslain and J. Thebault, ibid. 77(8) (1994) 2049.

    Article  Google Scholar 

  39. F. Lamouroux, R. Naslain and J. M. Jouin, ibid. 77(8) (1994) 2058.

    Article  Google Scholar 

  40. S. Bertrand, O. Boisron, R. Pailler, J. Lamon and R. Naslain, Key Engng. Mater. 164–165 (1999) 357.

    Google Scholar 

  41. F. Lamouroux, S. Bertrand, R. Pailler, R. Naslain and M. Cataldi, Comp. Sci. Techn. 59 (1999) 1073.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naslain, R., Guette, A., Rebillat, F. et al. Oxidation mechanisms and kinetics of SiC-matrix composites and their constituents. J Mater Sci 39, 7303–7316 (2004). https://doi.org/10.1023/B:JMSC.0000048745.18938.d5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000048745.18938.d5

Keywords

Navigation