Skip to main content
Log in

Effect of lattice constant of zinc oxide on antibacterial characteristics

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Zinc oxide powders were heated in different atmospheres at 800 and 1400 °C, of which the characterization and the antibacterial activity were studied by X-ray diffractometry and the measurement of the change in electrical conductivity with bacterial growth. The diffraction peaks corresponding to zinc oxide with hexagonal type structure were detected in all samples, which shifted in low-angle side with the increase in the oxidizability of atmosphere during heat-treatment. From the results of calculating lattice constants, a0 and c0, it was found that the value of c0 in hexagonal structure increased with the increase in the oxidizability of atmosphere. On the samples heated at 1400 °C, the changes of the c0 value were less than those at 800 °C. However, no change of the a0 value showed, irrespective of atmosphere and temperature. Hydrogen peroxide that contributes to the occurrence of antibacterial activity was found to generate from all samples, and the generation amount increased with the increase of c0 value; incidently the amount in the samples heated at 1400 °C was less than that at 800 °C. The antibacterial activity of zinc oxide increased with the increase of c0 value; that is, it was found that the value of c0 in crystal structure affected the antibacterial activity of zinc oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. R. Beuchat, J. Food Prot. 59 (1996) 204.

    Google Scholar 

  2. R. Tauxe, H. Kruse, C. Hedberg, M. Potter, J. Madden and K. Wachsmuth, ibid. 60 (1997) 1400.

    Google Scholar 

  3. T. A. Bellar, J. J. Lichtenberg and R. C. Kroner, J. Am. Water Works Assoc. 66 (1974) 703.

    Google Scholar 

  4. J. Kim, M. R. Marshall, X. U. Du, W. S. Otwell and C. I. Wei, J. Agricult. Food Chem. 47 (1999) 3586.

    Article  Google Scholar 

  5. J. Sawai, H. Igarashi, A. Hashimoto, T. Kokugan and M. Shimizu, J. Chem. Eng. Jpn 28 (1995) 288.

    Google Scholar 

  6. J. Sawai, H. Kojima, H. Igarashi, A. Hashimoto, S. Shoji, A. Takehara, T. Sawaki, T. Kokugan and M. Shimizu, ibid. 30 (1997) 1034.

    Google Scholar 

  7. J. Sawai, H. Kojima, F. Kano, H. Igarashi, A. Hashimoto, E. Kawada, T. Kokugan and M. Shimizu, W. J. Microbiol. Biotech. 14 (1998) 773.

    Article  Google Scholar 

  8. J. Sawai, M. Satoh, H. Horikawa, H. Shiga and H. Kojima, J. Food Prot. 64 (2001) 1579.

    PubMed  Google Scholar 

  9. J. Sawai, H. Shiga and H. Kojima, Int. J. Food Microbiol. 71 (2001) 211.

    Article  PubMed  Google Scholar 

  10. O. Yamamoto, J. Sawai and T. Sasamoto, Int. J. Inorg. Mater. 2 (2000) 451.

    Article  Google Scholar 

  11. O. Yamamoto, T. Shimura, J. Sawai, H. Kojima and T. Sasamoto, J. Ceram. Soc. Jpn 108 (2000) 156.

    Google Scholar 

  12. O. Yamamoto, T. Fukuda, M. Kimata, J. Sawai and T. Sasamoto, ibid. 109 (2001) 363.

    Google Scholar 

  13. O. Yamamoto, Int. J. Inorg. Mater. 3 (2001) 643.

    Article  Google Scholar 

  14. O. Yamamoto, M. Hotta, J. Sawai, T. Sasamoto and H. Kojima, J. Ceram. Soc. Jpn 106 (1998) 1007.

    Google Scholar 

  15. O. Yamamoto, K. Nakakoshi, J. Sawai, T. Sasamoto, H. Nakagawa and K. Miura, Carbon 39 (2001) 1643.

    Article  Google Scholar 

  16. O. Yamamoto and J. Sawai, Bull. Chem. Soc. Jpn 74 (2001) 1761.

    Article  Google Scholar 

  17. J. Sawai, E. Kawada, F. Kanou, H. Igarashi, A. Hashimoto, T. Kokugan and M. Shimizu, J. Chem. Eng. Jpn 29 (1996) 627.

    Google Scholar 

  18. M. Zhou, Z. Diwu, N. Panchuk-Voloshina and R. P. Haugland, Anal. Biochem. 253 (1997) 162.

    Article  PubMed  Google Scholar 

  19. D. Goeckeritz, F. Friedrich and M. Yahya, Pharmazie 50 (1995) 437.

    Google Scholar 

  20. D. G. Thomas, J. Phys. Chem. Solids 3 (1957) 229.

    Article  Google Scholar 

  21. O. Yamamoto, J. Sawai, K. Nakakoshi, H. Nakagawa, K. Miura and T. Sasamoto, Transo 2000(191) (2000) 2.

    Google Scholar 

  22. G. Eden and R. Eden, IEEE Trans. Biomed. Eng. 31 (1984) 193.

    PubMed  Google Scholar 

  23. J. Sawai, S. Shoji, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu and H. Kojima, J. Ferment Bioeng. 86 (1998) 521.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, O., Komatsu, M., Sawai, J. et al. Effect of lattice constant of zinc oxide on antibacterial characteristics. Journal of Materials Science: Materials in Medicine 15, 847–851 (2004). https://doi.org/10.1023/B:JMSM.0000036271.35440.36

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000036271.35440.36

Keywords

Navigation