Skip to main content
Log in

Development and Initial Characterization of Xenomitochondrial Mice

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Xenomitochondrial mice harboring trans-species mitochondria on a Mus musculus domesticus (MD) nuclear background were produced. We created xenomitochondrial ES cell cybrids by fusing Mus spretus (MS), Mus caroli (MC), Mus dunni (Mdu), or Mus pahari(MP) mitochondrial donor cytoplasts and rhodamine 6-G treated CC9.3.1 or PC4 ES cells. The selected donor backgrounds reflected increasing evolutionary divergence from MD mice and the resultant mitochondrial–nuclear mismatch targeted a graded respiratory chain defect. Homoplasmic (MS, MC, Mdu, and MP) and heteroplasmic (MC) cell lines were injected into MD ova, and liveborn chimeric mice were obtained (MS/MD 18 of 87, MC/MD 6 of 46, Mdu/MD 31 of 140, and MP/MD l of 9 founder chimeras, respectively). Seven MS/MD, 1 MC/MD, and 11 Mdu/MD chimeric founder females were mated with wild-type MD males, and 18 of 19 (95%) were fertile. Of fertile females, only one chimeric MS/MD (1% coat color chimerism) and four chimeric Mdu/MD females (80–90% coat color chimerism) produced homoplasmic offspring with low efficiency (7 of 135; 5%). Four male and three female offspring were homoplasmic for the introduced mitochondrial backgrounds. Three male and one female offspring proved viable. Generation of mouse lines using additional female ES cell lineages is underway. We hypothesize that these mice, when crossbred with neurodegenerative-disease mouse models, will show accelerated age-related neuronal loss, because of their suboptimal capacity for oxidative phosphorylation and putatively increased oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Betarbet, R., Sherer, T. B., MacKenzie, G., Garcia-Osuna, M., Panov, A. V., and Greenamyre. J. T. (2000). Nat. Neurosci. 3, 1301–1306.

    PubMed  Google Scholar 

  • Boles, R. G., Luna, C., and Ito, M. (2003). Pediatr. Cardiol. 24, 484–487.

    PubMed  Google Scholar 

  • Dawson, T. M., and Dawson, V. L. (2003). Science 302, 819–822.

    PubMed  Google Scholar 

  • DiMauro, S., and Schon, E. A. (2001). Am. J. Med. Genet. 106,18–26.

    PubMed  Google Scholar 

  • Irwin, M. H., Johnson, L. W., and Pinkert, C. A. (1999). Transgenic Res. 8, 119–123.

    PubMed  Google Scholar 

  • Heikkila, R. E., Hess, A., and Duvoisin, R. C. (1984). Science 224, 1451–1453.

    PubMed  Google Scholar 

  • Levy, S. E., Waymire, K. G., Kim, Y. L., MacGregor, G. R., and Wallace, D. C. (1999). Transgenic Res. 8, 137–145.

    PubMed  Google Scholar 

  • Manfredi, G., and Beal, M. F. (2000). Brain Pathol. 10, 462–472.

    PubMed  Google Scholar 

  • McKenzie, M., and Trounce, I. (2000). J. Biol. Chem. 275, 31514–31519.

    PubMed  Google Scholar 

  • McKenzie, M., Chiotis, M., Pinkert, C. A., and Trounce, I. A. (2003). Mol. Biol. Evol. 20, 1117–1124

    PubMed  Google Scholar 

  • McKenzie, M., Trounce, I. A., Cassar, C. A., and Pinkert, C. A. (2004). Proc. Natl. Acad. Sci. U.S.A. 101, 1685–1690.

    PubMed  Google Scholar 

  • Pinkert, C. A., and Trounce, I. A. (2002). Methods 26, 348–357.

    PubMed  Google Scholar 

  • Pinkert, C. A., and Trounce, I. A. (in press). In Mitochondria in Health and Disease (Berdanier, C.D., ed.), Marcel Dekker Inc., New York.

  • Pinkert, C. A., Irwin, M. H., Johnson, L. W., and Moffatt, R. J. (1997). Transgenic Res. 6, 379–383.

    PubMed  Google Scholar 

  • Polites, H. G., and Pinkert, C. A. (2002). In Transgenic Animal Technol-ogy: A Laboratory handbook (Pinkert, C.A., ed), Academic Press, San Diego, pp. 15–70.

    Google Scholar 

  • Sherer, T. B., Betarbet, R., Testa, C. M., Seo, B. B., Richardson, J. R., Kim, J. H., Miller, G. W., Yagi, T., Matsuno-Yagi, A., and Greenamyre, J. T. (2003). J. Neurosci. 23, 10756–10764.

    PubMed  Google Scholar 

  • Sligh, J. E., Levy, S. E., Waymire, K. G., Allard, P., Dillehay, D. L., Nusinowitz, S., Heckenlively, J. R., MacGregor, G. R., and Wallace, D. C.(2000). Proc. Natl. Acad. Sci. U.S.A. 97, 14461–14466.

    PubMed  Google Scholar 

  • Trimmer, P. A., Borland, M. K., Keeney, P. M., Bennett, J. P., Jr., and Parker, W. D., Jr. (2004a). J. Neurochem. 88–812.

  • Trimmer, P. A., Keeney, P. M., Borland, M. K., Simon, F. A., Almeida, J., Swerdlow, R. H., Parks. J. P., Parker, W. D., Jr., and Bennett, J. P., Jr. (2004b). Neurobiol. Dis. 15,29–39.

    PubMed  Google Scholar 

  • Trounce, I. A., and Pinkert, C. A. (in press). In Mitochondria in Health and Disease (Berdanier, C.D., ed.), Marcel Dekker Inc., New York.

  • Trounce, I., Schmiedel, J., Yen, H. C., Hosseini, S., Brown, M. D., Olson, J. J., and Wallace, D. C. (2000). Nucleic Acids Res. 28, 2164–2170.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trounce, I.A., McKenzie, M., Cassar, C.A. et al. Development and Initial Characterization of Xenomitochondrial Mice. J Bioenerg Biomembr 36, 421–427 (2004). https://doi.org/10.1023/B:JOBB.0000041778.84464.16

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOBB.0000041778.84464.16

Navigation