Skip to main content
Log in

Inhibition of Nitrosomonas europaea by Monoterpenes from Coastal Redwood (Sequoia sempervirens) in Whole-Cell Studies

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Inhibition by allelochemicals, including monoterpenes, has been suggested as a factor in the extremely low nitrification rates observed in coastal redwood forests. Similarities between the molecular structure of known nitrification inhibitors and some conifer monoterpenes have been suggested as one reason for the inhibition of autotrophic nitrifiers by conifer monoterpenes. The effect of monolerpenes on nitrification rate and growth of Nitrosomonas europaea was examined in whole-cell pure culture experiments using the five most abundant monoterpenes in coastal redwood needles. These are (in order of decreasing concentration in the needles) limonene, α-pinenc, sabinene, myrcene, and γ-terpinene. Four of the five compounds significantly inhibited growth of N. europaea in batch culture experiments. Short-term kinetic studies of the two most inhibitory monoterpenes, limonene and α-pinene, were performed on whole cells to evaluate the mode of interaction between these chemicals and nitrification rates. Inhibition constants (K i) of limonene (38 μM) and α-pinene (95 μM) were determined. Lineweaver-Burk plots of nitrification in the presence of monoterpenes appear to fit a noncompetitive inhibition model; however, the mechanisms of inhibition may be more complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • BEDARD, C., and KNOWLES, R. 1989. Physiology, biochemistry and specific inhibitors of CH4, NH4 +, and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev. 53:68–84.

    Google Scholar 

  • BERTSCH, W., and ANDERSON, E. 1975. Trace analysis of organic volatiles in water by gas chromatography-mass spectroscopy with glass capillary columns. J. Chromatogr. 112:701–718.

    Google Scholar 

  • BREMNER, J. M., and MC CARTY, G. W. 1991. Effects of terpenoids on nitrification in soil—reply. Soil Sci. Soc. Am. J. 54:297–298.

    Google Scholar 

  • BUTTON, D. K. 1984. Evidence for a terpene-based food chain in the Gulf of Alaska. Appl. Environ. Microbiol. 48:1004–1011.

    Google Scholar 

  • FISCHER, N. H. 1991. Plant terpenoids as allelopathic agents, pp. 377–398, in J. B. Harbourne and F. A. Tomas-Barberan (eds.). Ecological Chemistry and Biochemistry in Plant Terpenoids. Oxford University Press, Oxford, UK.

    Google Scholar 

  • FISCHER, H. Y., WILLIAMSON, C. B., WEIDENHAMER, J. D., and RICHARDSON, D. R. 1994. In search of allelopathy in the Florida scrub: The role of terpenoids. J. Chem. Ecol. 20:1355–1380.

    Google Scholar 

  • GRASSHOFF, K., EHRHARDT, M., and KREMLING, K. (eds.). 1983. Methods of Seawater Analysis. Verlag Chemie, New York.

    Google Scholar 

  • HALL, G. D., and LANGENHEIM, J. H. 1986a. Temporal changes in the leaf monoterpenes of Sequoia sempervirens. Biochem. Syst. Ecol. 14:61–69.

    Google Scholar 

  • HALL, G. D., and LANGENHEIM, J. H. 1986b. Within tree spatial variation in the leaf monoterpenes of Sequoia sempervirens. Biochem. Syst. Ecol. 14:625–632.

    Google Scholar 

  • HARDER, J., and PROBIAN, C. 1995. Microbial degradation of monoterpenes in the absence of molecular oxygen. Appl. Environ. Microbiol. 61:3804–3808.

    Google Scholar 

  • HART, S. C., and FIRESTONE, M. K. 1991. Forest-floor mineral-soil interactions in the internal nitrogen cycle of an old-growth forest. Biogeochemistry 12:103–127.

    Google Scholar 

  • HOOPER, A. B., and TERRY, K. R. 1973. Specific inhibitors of ammonia oxidation in Nitrosomonas. J. Bacteriol. 115:480–485.

    Google Scholar 

  • HORNER, J. D., Gosz, J. R., and CATES, R. G. 1988. The role of carbon based plant secondary compounds in decomposition in terrestrial ecosystems. Am. Nat. 132:867–883.

    Google Scholar 

  • HYMAN, M. R., and WOOD, P. M. 1983. Methane oxidation by Nitrosomonas europaea. Biochem. J. 212:31–37.

    Google Scholar 

  • HYMAN, M. R., and WOOD, P. M. 1985. Suicidal inactivation and labeling of ammonia monooxygenase by acetylene. J. Biochem. 227:719–725.

    Google Scholar 

  • HYMAN, M. R., SANSOME-SMITH, A. W., SHEARS, J. H., and WOOD, P. M. 1985. A kinetic study of benzene oxidation to phenol by whole cells of Nitrosomonas europaea and evidence for the further oxidation of phenol to hydroquinone. Arch. Microbiol. 143:302–306.

    Google Scholar 

  • HYMAN, M. R., MURTON, I. B., and ARP, D. J. 1988. Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes. Appl. Environ. Microbiol. 54:3187–3190.

    Google Scholar 

  • KEENER, W. K., and ARP, D. J. 1993. Kinetic studies of ammonia monooxygenase inhibition in Nitrosomonas europaea by hydrocarbons and halogenated hydrocarbons in an optimized wholecell assay. Appl. Environ. Microbiol. 59:2501–2510.

    Google Scholar 

  • KILHAM, K. 1990. Nitrification in conifer forest soils. Plant Soil 128:31–44.

    Google Scholar 

  • KNOBLOCH, K. H., WEIGAND, H., WEIS, N., SCHARM, H. M., and VIGENSHOW, H. 1986. Action of terpenoids on energy metabolism, pp. 429–445, in E. J. Burke (ed.). Progress in Essential Oil Research. Walter de Gruyter, Berlin.

    Google Scholar 

  • LEES, H. 1946. Effect of copper enzyme poisons on soil nitrification. Nature 158:97.

    Google Scholar 

  • LEES, H. 1952. The biochemistry of nitrifying organisms. I. The ammonia-oxidizing systems of Nitrosomonas. Biochem. J. 52:134–139.

    Google Scholar 

  • LOHDI, M. A. K., and KILLINGBECK, K. T. 1980. Allelopathic inhibition of nitrification and nitrifying bacteria in a ponderosa pine (Pinus ponderosa Dougl.) community. Am. J. Bot. 67:1423–1429.

    Google Scholar 

  • LERCH, K. 1981. Copper monooxygenase: Tyrosinase and dopamine beta-monooxygenase, pp. 143–186, in H. Sigel (ed.). Metal Ions in Biological Systems. Marcel Dekker, New York.

    Google Scholar 

  • MC CARTY, G. W., and BREMNER, J. M. 1991. Inhibition of nitrification in soil by gaseous hydrocarbons. Biol. Fertil. Soil 11:231–233.

    Google Scholar 

  • MULLER, C., and DEL MORAL, R. 1966. Soil toxicity induced by terpenes from Salvia leucophylla. Bull. Torrey Bot. Club 93:332–351.

    Google Scholar 

  • PORTER, K. G., and FEIG, Y. S. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25:943–948.

    Google Scholar 

  • OKOMOTO, R. A., ELLISON, B. O., and KEPNER, R. E. 1981. Volatile terpenes in Sequoia sempervirens. Changes in composition during maturation. J. Agric. Food Chem. 29:324–326.

    Google Scholar 

  • RICE, E. L. 1984. Allelopathy, 2nd ed. Academic Press, New York.

    Google Scholar 

  • SEGEL, I. H. 1976. Biochemical calculations: How to solve mathematical problems in general biochemistry. 2nd ed. John Wiley & Sons, New York.

    Google Scholar 

  • SHEARS, J. H., and WOOD, P. M. 1985. Spectroscopic evidence for a photosensitive oxygenated state of ammonia monooxygenase. Biochem. J. 226:499–507.

    Google Scholar 

  • SHUKLA, O. P., MOHOLAY, M. N., and BHATTACHARYYA, P. K. 1968. Microbial transformations of terpenes. Part X: Fermentation of α-and β-pinenes by a soil pseudomonad (PL strain). Indian J. Biochem. Biophys. 5:79–91.

    Google Scholar 

  • SORIANO, R., and WALKER, N. 1968. Isolation of ammonia oxidizing autotrophic bacteria. J. Appl. Bacteriol. 31:493–497.

    Google Scholar 

  • STRICKLAND, J. D. H., and PARSONS, T. R. 1972. A Practical Handbook of Seawater Analysis, 2nd ed. Bulletin 67. Fisheries Research Board of Canada.

  • SUZUKI, I., DULAR, U., and KWOK, S. C. 1974. Ammonia or ammonium as substrate for oxidation in Nitrosomonas europaea cells and extracts. J. Bacteriol. 120:556–558.

    Google Scholar 

  • TANRISEVER, H., FISCHER, N. H., and WILLIAMSON, B. 1981. Menthofurans from Calamintha ashei: Effects on Sachyrium scoparium and Lactuca sativa. Phytochemistry 27:2523–2526.

    Google Scholar 

  • URIBE, S., RAMIREZ, J., and PENA, A. 1985. Effects of beta-pinene on yeast membrane functions. J. Bacteriol. 161:1195–1200.

    Google Scholar 

  • VANELLI, T., and HOOPER, A. B. 1992. Oxidation of nitrapyrin to 6-chloropicolinic acid by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 58:2321–2325.

    Google Scholar 

  • WARD, B. B. 1987. Kinetic studies on ammonium and methane oxidation by Nitrosococcus oceanus. Arch. Microbiol. 147:126–133.

    Google Scholar 

  • WARD, B. B. 1990. Kinetics of ammonia oxidation by a marine nitrifying bacterium: Methane as a substrate analogue. Microb. Ecol. 19:211–225.

    Google Scholar 

  • WEIDENHAMER, J. D., MACIAS, F. A., FISCHER, N. H., and WILLIAMSON, G. B., 1993. Just how insoluble are monoterpenes? J. Chem. Ecol. 19:1799–1807.

    Google Scholar 

  • WHITE, C. S. 1986. Volatile and water-soluble inhibitors of nitrogen mineralization in a ponderosa pine forest. Biol. Fertil. Soils 2:97–104.

    Google Scholar 

  • WHITE, C. S. 1988. Nitrification inhibition by monoterpenoids: A theoretical mode of action based on molecular structure. Ecology 69:1631–1633.

    Google Scholar 

  • WHITE, C. S. 1990. Comments on “The effects of terpenoids on nitrification in soil.” Soil Sci. Soc. Am. J. 54:296–297.

    Google Scholar 

  • WHITE, C. S. 1991. The role of monoterpenes in soil nitrogen cycling processes in ponderosa pine. Biogeochemistry 12:43–68.

    Google Scholar 

  • WHITE, C. S. 1994. Monoterpenes: Their effects on ecosystem nutrient cycling. J. Chem. Ecol. 20:1381–1406.

    Google Scholar 

  • WILT, F. M., MILLER, A. G., EVERETT, R. L., and HACKETT, M. 1993. Monoterpene concentrations in fresh, senescent, and decaying foliage of single-leaf pinyon pine (Pinus monophylla Torr. & Frem: Pinaceae) from the western Great Basin. J. Chem. Ecol. 19:185–194.

    Google Scholar 

  • WOOD, S. E. 1996. Loss of foliar monoterpenes from Umbellularia californica leaf litter and their influence on nitrification potential in soil beneath the trees. PhD dissertation. University of California, Santa Cruz, 151 pp.

  • WOOD, S. E., GASKIN, J. F., and LANGENHEIM, J. H. 1995. Loss of monoterpenes from Umbellularia californica leaf litter. Biochem. Syst. Ecol. 23:581–591.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, B.B., Courtney, K.J. & Langenheim, J.H. Inhibition of Nitrosomonas europaea by Monoterpenes from Coastal Redwood (Sequoia sempervirens) in Whole-Cell Studies. J Chem Ecol 23, 2583–2598 (1997). https://doi.org/10.1023/B:JOEC.0000006668.48855.b7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEC.0000006668.48855.b7

Navigation