Skip to main content
Log in

Phytoecdysteroids: A Novel Defense Against Plant-Parasitic Nematodes

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The phytoecdysteroid, 20-hydroxyecdysone (20E), is a major molting hormone of invertebrates possibly including nematodes. As 20E is inducible in spinach, the defensive role against plant-parasitic nematodes was investigated. The effects of direct application on nematodes was assessed by treating cereal cyst nematode, Heterodera avenae, juveniles with concentrations of 20E from 8.2 × 10−8 to 5.2 × 10−5 M before applying to Triticum aestivum growing in sand. H. avenae, Heterodera schachtii (sugarbeet cyst nematode), Meloidogyne javanica (root-knot nematode) and Pratylenchus neglectus (root lesion nematode) were treated with 5.2 × 10−5 20E and incubated in moist sand. To test the protective effects of 20E in plants, the latter three nematodes were applied to Spinacia oleracea in which elevated concentrations of 20E had been induced by methyl jasmonate. Abnormal molting, immobility, reduced invasion, impaired development, and death occurred in nematodes exposed to 20E either directly at concentration above 4.2 × 10−7 M or in plants. Phytoecdysteroid was found to protect spinach from plant-parasitic nematodes and may confer a mechanism for nematode resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aguinaldo, A.M.A., Turbeville, J.M., Linford, L.S., Rivera, M.C., Garey, J.R., Raff, R.A., and Lake, J. A. 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Na. Lond. 387:489–493.

    Google Scholar 

  • Arnault, C. and Slama, K. 1986. Dietary effects of phytoecdysones in the leek-moth, Acrolepiopsis assectella Zell. (Lepidoptera: Acrolepiidae). J. Chem. Ecol. 12:1979–1986.

    Google Scholar 

  • Baldwin, I. T. 1998. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc. Natl. Acad. Sci. U.S.A. 95:8113–8118.

    Google Scholar 

  • Barker, G.C., Chitwood, D.J.,and Rees, H. H. 1990. Ecdysteroids in helminths and annelids. Invertebr. Reprod. Dev. 18:1–2.

    Google Scholar 

  • Bergamasco, R. and Horn, D. H. S. 1983. Distribution and role of insect hormones in plants, pp. 627–654, in R. G. Downer and H. Laufer (eds.). Invertebrate Endocrinology, Endocrinology of Insects. Liss, New York.

  • Blackford, M.J.P. and Dinan, L. 1997. The effects of ingested 20-hydroxyecdysone on the larvae of Aglais urticae, Inachis io, Cynthia cardui (Lepidoptera: Nymphalidae) and Tyria jacobaeae (Lepidoptera: Arctiidae). J. Insect Physiol. 43:315–327.

    Google Scholar 

  • Butenandt, A. and Karlson, P. 1954. ¨ —Uber die Isolierung eines Metamorphose-Hormons der Insekten in kristallisierten Form. Z. Naturforsch 9:389–391.

    Google Scholar 

  • Byrd, D.W., Nusbaum, C.J.,and Barker, K. R. 1966. A rapid flotation-sieving technique for extracting nematodes from soil. Plant Dis. Rep. 50:954–957.

    Google Scholar 

  • Camps, F. and Coll, J. 1993. Insect allelochemicals from Ajuga plants. Phytochemistry 32:1361–1370.

    Google Scholar 

  • Cramer, C.L., Weissenborn, D., Cottingham, C. K., Denbow, C.J., Eisenback, J. D., Radin, D. N., and Yu, X. 1993. Regulation of defense-related gene expression during plant-pathogen interactions. J. Nematol. 25:507–518.

    Google Scholar 

  • Creelman, R.A. and Mullet, J. E. 1995. Jasmonic acid distribution and action in plants: Regulation during development and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. U.S.A. 92:4114–4119.

    Google Scholar 

  • Creelman, R.A. and Mullet, J. E. 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:355–381.

    Google Scholar 

  • Creelman, R. A., Tierney, M.L., and Mullet, J. E. 1992. Jasmonic acid/methyl jasmonate accu-mulate in wounded soybean hypocotyls and modulate wound gene expression. Proc. Natl. Acad. Sci. U.S.A. 89:4938–4941.

    Google Scholar 

  • Davies, J. M., and Fisher, J. M. 1994.On harmonal control of moulting in Aphelenchus avenae (Nematospiroides: Aphelenchida)Int. J. Parasitol 29:649–655.

    Google Scholar 

  • Dennis, R. D. 1976. Insect morphogenetic hormones and developmental mechanisms in the nematode, Nematospiroides dubius. Comp. Biochem. Physiol. 1:53–56.

    Google Scholar 

  • Dennis, R. D. W. 1977. Partial characterisation of and the effect of insect growth hormones on the ribosomes and polyribosomes of the nematode, Panagrellus redivivus. Int. J. Parasitol. 7:171–179.

    Google Scholar 

  • Dinan, L. 2001. Phytoecdysteroids: Biological aspects. Phytochemistry 57:325–339.

    Google Scholar 

  • Dinan, L. and Sehnal, F. 1995. A strategy for the identification of ecdysteroid receptor agonists and antagonists from plants. Eur. J. Entomol. 92:271–283.

    Google Scholar 

  • Fleming, M. W. 1985. Ascaris suum: Role of ecdysteroids in molting. Exp. Parasitol. 60:207–210.

    Google Scholar 

  • Gailbraith, M.N. and Horn, D. H. S. 1966. An insect-moulting hormone from a plant. J. Chem. Soc. Chem. Commun. 905–906.

  • Grebenok, R.J. and Adler, J. H. 1993. Ecdysteroid biosynthesis during the ontogeny of spinach leaves. Phytochemistry 33:341–347.

    Google Scholar 

  • Gundlach, H., Muller, M.J., Kutchan, T.M., and Zenk, M. H. 1992. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. U.S.A. 89:2389–2393.

    Google Scholar 

  • Hoagland, D. and Arnon, D. I. 1938. The water culture method for growing plants without soil. Calif. Agric. Exp. Sta. Circ. 347:1–39.

    Google Scholar 

  • Huang, J.S. and Barker, K. R. 1991. Glyceollin I in soybean-cyst nematode interactions spatial and temporal distribution in roots of resistant and susceptible soybeans. Plant Physiol. 96:1302–307.

    Google Scholar 

  • Imai, S., Toyasato, T., Sakai, M., Sato, Y., Fujioka, S., Murata, E., and Goto, M. 1969. Screening results of plants for phytoecdysones. Chem. Pharm. Bull. 17:335–339.

    Google Scholar 

  • Kaplan, D.T. and Keen, N. T. 1980. Mechanisms conferring plant incompatibility to nematodes. Rev. Nematol. 3:123–134.

    Google Scholar 

  • Kempster, V. N., Davies, K. A., and Scott, E. S. 2001. Chemical and biological induction of resistance to the clover cyst nematode (Heterodera trifolii) in white clover (Trifolium repens). Nematology 3:35–43.

    Google Scholar 

  • Kubo, I., Klocke, J. A., and Asano, S. 1983. Effects of ingested phytoecdysteroids on the growth and development of two lepidopterous larvae. J. Insect Physiol. 29:307–316.

    Google Scholar 

  • Lafont, R., Bouthier, A., and Wilson, I. D. 1991. Phytoecdysteroids: Structures, occurrence, biosynthesis and possible ecological significance, pp. 197–214, in I. Hardy (ed.). Insect Chemical Ecology. Academia Prague and SPB Academy, Hague, The Netherlands.

  • Mendis, A.H.W., Rose, M.E., Rees, H. H., and Goodwin, T. W. 1983. Ecdysteroids in adults of the nematode Dirofilaria immitis. Mol. Biochem. Parasitol. 9:209–226.

    Google Scholar 

  • Mercer, J. G., Barker, G.C., Mccall, J.W., Howells, R.E., and Rees, H. H. 1989. Studies on the biosynthesis and fate of ecdysteroids in filarial nematodes. Trop. Med. Parasitol. 40:429–433.

    Google Scholar 

  • Mondy, N., Caissa, C., Pitoizet, N., Delbecque, J.P., Corio Costet, M.F., Belles, X., and Cherbas, P. 1997. Effects of the ingestion of Serratula tinctoria extracts, a plant containing phytoecdysteroids, on the development of the vineyard pest Lobesia botrana (Lepidoptera: Tortricidae). Arch. Insect Biochem. Physiol. 35:227–235.

    Google Scholar 

  • Moody, E. H., Lownsbery, B.F.,and Ahmed, J. M. 1973. Culture of the root-lesion nematode Pratylenchus vulnus on carrot disks. J. Nematol. 5:225–226.

    Google Scholar 

  • Mor, M., Cohn, E., and Spiegel, Y. 1992. Phenology, pathogenicity and pathotypes of cereal cyst ne-matodes, Heterodera avenae and H. latipons (Nematoda: Heteroderidae) in Israel. Nematologica 38:494–501.

    Google Scholar 

  • Nakanishi, K., Koreeda, M., Sasaki, S., Chang, M.L., and Hsu, H. Y. 1966. Insect hormones. The structure of ponasterone A, an insect molting hormone from the leaves of Podocarpus nakaii Hay. Chem. Commun. 915–917.

  • Nelson, F.K. and Riddle, D. L. 1984. Functional study of the Caenorhabditis elegans secretory-excretory system using laser microsurgery. J. Exp. Zool. 231:45–56.

    Google Scholar 

  • Niebel, A., De Almeida-Engler,J., Tire, C., Engler, G., Montague, M.V., and Gheysen, G. 1993. Induction patterns of an extensin gene in tobacco upon nematode infection. Plant Cell 5:1697–1710.

    Google Scholar 

  • Oka, Y., Hinanit, K., Meira Bar, E., Mishael, M., Sharon, E., Ilan, C., and Spiegel, Y. 2000. New strategies for the control of plant-parasitic nematodes. Pest Manage. Sci. 56:983–988.

    Google Scholar 

  • Opperman, C. H. 2001. Forward genetic analysis of plant-parasitic nematode-host interactions, pp. 45–50, in M. W. Kennedy and W. Harnett (eds.). Parasitic Nematodes. Molecular Biology, Biochemistry and Immunology. CABI, Oxon, UK.

  • Potter, M.J., Vanstone, V. A., Davies, K.A., Kirkegaard, J. A., and Rathjen, A. J. 1999. Reduced susceptibility of Brassica napus to Pratylenchus neglectus in plants with elevated root levels of 2-phenylethyl glucosinolate. J. Nematol. 31:291–298.

    Google Scholar 

  • Robbins, W.E., Kaplanis, J. N., Thompson, M.J., Shortino, T.J.,and Joyner, S. C. 1970. Ecdysones and synthetic analogs: Molting hormone activity and inhibitive effects on insect growth, metamorphosis, and reproduction. Steroids 16:105–125.

    Google Scholar 

  • Roberts, P. A., Matthews, W.C., and Veremis, J. C. 1998. Genetic mechanisms of host-plant resistance to nematodes, pp. 209–238, in K. R. Barker, G. A. Pedersonand, and G. L. Windham (eds.). Plant and Nematode Interactions. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, Wisconsin.

  • Rogers, W. P. 1973. Juvenile and moulting hormones from nematodes. Parasitology 67:105–113.

    Google Scholar 

  • Savolainen, V., Wuest, J., Lafont, R., and Connat, J. L. 1995. Effects of ingested phytoecdysteroids in the female soft tick Ornithodoros moubata. Experientia 51:596–600.

    Google Scholar 

  • Schmelz, E. A., Grebenok, R.J., Galbraith, D.W., and Bowers, W. S. 1998. Damage-induced accumulation of phytoecdysteroids in spinach: A rapid root response involving the octadecanoic acid pathway. J. Chem. Ecol. 24:339–360.

    Google Scholar 

  • Schmelz, E. A., Grebenok, R.J., Galbraith, D.W., and Bowers, W. S. 1999. Insect-induced synthesis of phytoecdysteroids in spinach, Spinacia oleracea. J. Chem. Ecol. 25:1739–1757.

    Google Scholar 

  • Schmelz, E. A., Grebenok, R.J., Ohnmeiss, T.E., and Bowers, W. S. 2000. Phytoecdysteroid turnover in spinach: Long-term stability supports a plant defense hypothesis. J. Chem. Ecol. 26:2883–2896.

    Google Scholar 

  • Schmelz, E. A., Grebenok, R.J., Ohnmeiss, T.E., and Bowers, W. S. 2002. Interactions between Spinacia oleracea and Bradysia impatiens: A role for phytoecdysteroids. Arch. Insect Biochem. Physiol. 51:204–221.

    Google Scholar 

  • Shepherd, A. M. 1962. New blue R, a stain that differentiates between living and dead nematodes. N´ ematologica 8:201–208.

    Google Scholar 

  • Sijmons, P. C. 1993. Plant-nematode interactions. Plant Mol. Biol. 23:917–931.

    Google Scholar 

  • Tomas, J., Camps, F., Coll, J., Mele, E., and Messeguer, J. 1993. Phytoecdysteroid production by Ajuga reptans tissue cultures. Phytochemistry 32:317–324.

    Google Scholar 

  • Trudgill, D. L. 1991. Resistance to and tolerance of plant parasitic nematodes in plants. Annu. Rev. Phytopathol. 29:167–192.

    Google Scholar 

  • Whitehead, A. G. 1998. Plant Nematode Control. CAB, Oxon, UK, 384p.

  • Whitehead, A.G. and Hemming, J. R. 1965. Acomparison of some quantitative methods of extracting small vermiform nematodes from soil. Ann. Appl. Biol. 55:25–38.

    Google Scholar 

  • Wyss, U., Grundler, F.M.W., and Muench, A. 1992. The parasitic behaviour of second-stage juveniles of Meloidogyne incognita in roots of Arabidopsis thaliana. Nematologica 38:98–111.

    Google Scholar 

  • Wyss, U. and Zunke, U. 1986. Observations on the behaviour of second stage juveniles of Heterodera schachtii inside host roots. Rev. N´ ematol. 9:153–165.

    Google Scholar 

  • Zacheo, G. and Bleve-Zacheo, T. 1995. Plant-nematode interactions: Histological, physiological and biochemical interactions, pp. 321–353, in K. Kohmoto, U. M., Singh, and R. P. Singh (eds.). Pathogenesis and Host Specificity in Plant Diseases. Elsevier Science, Oxford, UK.

    Google Scholar 

  • Zunke, U. 1990. Observations on the invasion and endoparasitic behaviour of the root lesion nematode Pratylenchus penetrans. J. Nematol. 22:309–320.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soriano, I.R., Riley, I.T., Potter, M.J. et al. Phytoecdysteroids: A Novel Defense Against Plant-Parasitic Nematodes. J Chem Ecol 30, 1885–1899 (2004). https://doi.org/10.1023/B:JOEC.0000045584.56515.11

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEC.0000045584.56515.11

Navigation