Skip to main content
Log in

An Antidiffusive Entropy Scheme for Monotone Scalar Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In a recent work J. Sci. Comput. 16, 479–524 (2001), B. Després and F. Lagoutière introduced a new approach to derive numerical schemes for hyperbolic conservation laws. Its most important feature is the ability to perform an exact resolution for a single traveling discontinuity. However their scheme is not entropy satisfying and can keep nonentropic discontinuities. The purpose of our work is, starting from the previous one, to introduce a new class of schemes for monotone scalar conservation laws, that satisfy an entropy inequality, while still resolving exactly the single traveling shocks or contact discontinuities. We show that it is then possible to have an excellent resolution of rarefaction waves, and also to avoid the undesirable staircase effect. In practice, our numerical experiments show second-order accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alouges, F., De Vuyst, F., Le Coq, G., and Lorin, E. (2002). Un procédé de réduction de la diffusion numérique des schémas à différence de flux d'ordre un pour les systèmes hyperboliques non linéaires. C. R. Acad. Sci. Paris, Ser. I 335, 627–632.

    Google Scholar 

  2. Bouchut, F., Bourdarias, C., and Perthame, B. (1996). A MUSCL method satisfying all the numerical entropy inequalities. Math. of Comp. 65(216), 1439–1461.

    Google Scholar 

  3. Chalons, C., and LeFloch, P. G. (2001). A fully discrete scheme for diffusive-dispersive conservation laws. Numer. Math. 89, 493–509.

    Google Scholar 

  4. Cockburn, B., and Shu, C.-W. (2001). Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261.

    Google Scholar 

  5. Coquel, F., and LeFloch, P. (1996). An entropy satisfying MUSCL scheme for systems of conservation laws. Numer. Math. 74, 1–33.

    Google Scholar 

  6. Després, B., and Lagoutière, F. (2001). Contact discontinuity capturing schemes for linear advection and compressible gas dynamics. J. Sci. Comput. 16, 479–524.

    Google Scholar 

  7. Godlewski, E., and Raviart, P.-A. (1991). Hyperbolic Systems of Conservation Laws, Mathématiques et Applications 3/4, Ellipses, Paris.

    Google Scholar 

  8. Harten, A. (1978). The artificial compression method for computation of shocks and contact discontinuities. III. Self-adjusting hybrid schemes. Math. of Comp. 32(142), 363–389.

    Google Scholar 

  9. Harten, A. (1989). ENO schemes with subcell resolution. J. Comp. Phys. 83, 148–184.

    Google Scholar 

  10. Jiang, G.-S., and Shu, C.-W. (1996). Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228.

    Google Scholar 

  11. Kurganov, A., and Petrova, G. (2000). Central schemes and contact discontinuities. M2AN Math. Model. Numer. Anal. 34, 1259–1275.

    Google Scholar 

  12. Lagoutière, F. (2000). Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants, Ph.D. thesis, Université Paris VI.

  13. Lagoutière, F. (1999). Numerical Resolution of Scalar Convex Equations: Explicit Stability, Entropy, and Convergence Conditions, CEMRACS 1999 (Orsay), pp. 183–199 (electronic), ESAIM Proc. 10, Soc. Math. Appl. Indust., Paris.

    Google Scholar 

  14. Li, H. X., and Mao, D. K. (2002). Second-order entropy dissipation scheme for the scalar conservation law in one space dimension (in Chinese). Comm. Appl. Math. Comput. 16, 21–28.

    Google Scholar 

  15. Mao, D. K. (1999). Entropy satisfaction of a conservative shock-tracking method. SIAM J. Numer. Anal. 36, 529–550.

    Google Scholar 

  16. Shu, C.-W., and Osher, S. (1989). Efficient implementation of essentially nonoscillatory shock-capturing schemes. II. J. Comput. Phys. 83, 32–78.

    Google Scholar 

  17. Sweby, P. K. (1984). High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011.

    Google Scholar 

  18. Toro, E. F. (1999). Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 2nd ed., Springer-Verlag.

  19. Yang, H. (1990). An artificial compression method for ENO schemes: the slope modification method. J. Comp. Phys. 89, 125–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchut, F. An Antidiffusive Entropy Scheme for Monotone Scalar Conservation Laws. Journal of Scientific Computing 21, 1–30 (2004). https://doi.org/10.1023/B:JOMP.0000027953.74841.8c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMP.0000027953.74841.8c

Navigation