Skip to main content
Log in

Disilicide Diffusion Coating Inspection by Micro X-Ray Fluorescence Imaging

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Space Shuttle orbiter thrusters fabricated from C-103 niobium alloy rely on a fused chromium disilicide coating as protection from high-temperature oxidation. Coating voids caused by high-temperature spalling, micrometeorite damage, or other impact damage must first be detected, and then characterized to measure the amount of remaining coating materials, since service life is directly proportional to coating thickness. Existing techniques to estimate the thickness of this diffusion layer are labor intensive, prone to error, and require contact with the coating. Alternative non-contact methods are sought that can automate the detection and characterization of coating defects.

Micro X-ray fluorescence (MXRF) imaging is evaluated in this study as a potential NDE method to inspect the chromium disilicide coating. MXRF imaging, a relatively new technique to map the elemental composition of a surface, creates a high spatial resolution multispectral image that can be analyzed to detect coating voids and to quantify the remaining coating materials diffused in the alloy. Analysis of image data collected from sectioned thruster samples confirms that MXRF imaging is a viable detection and characterization method for the thruster coating inspection problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C-103 Data Sheet Literature, Wah Chang Company, 2003, Albany, OR. Available at: http://www.alleghenytechnologies.com.

  2. S. Priceman, Private Communication, May 2003, Hitemco, Old Bethpage, New York.

    Google Scholar 

  3. K. Ogawa, D. Minkov, T. Shoji, M. Sata, and H. Hashimoto, “NDE of degradation of thermal barrier coating by means of impedance spectroscopy,” NDT&E Int. 32, pp. 177–185 (1999).

    Google Scholar 

  4. R. J. Christensen, D. M. Lipkin, D. R. Clarke, and K. Murphy, “Nondestructive evaluation of the oxidation stresses through thermal barrier coatings using Cr 3+ piezospectrocopy,” Appl. Phys. Lett. 69(24), pp. 3745–3756 (1996).

    Google Scholar 

  5. H. P. Crutzen, F. Lakestani, and J. R. Nicholls, “Ultrasonic characterization of thermal barrier coatings,” Proc. IEEE Ultras. Symp., pp. 731–734 (1996).

  6. M. K. Tiwari, A. K. Singh, and K. J. S. Sawhney, “Analysis of stainless steel samples by energy dispersive X-ray fluorescence (EDXRF) spectrometry,” Bull. Mater. Sci. 24(6), pp. 633–638 (2001).

    Google Scholar 

  7. P. Wobrauschek, G. Halmetschlager, S. Zamini, C. Jokubonis, G. Trnka, and M. Karwowski, “Energy-dispersive X-ray fluorescence analysis of Celtic glasses,” X-Ray Spectrom. 29, pp. 25–33 (2000).

    Google Scholar 

  8. R. Wilson, G. Hamill, M. Funahashi, M. Kuraoka, S. Fujimura, and H. Kohno, “Comprehensive characterization of thin films using X-ray reflectometry and fluorescence,” Materials Research Society Fall Meeting Conference Proceedings, Nov. 30–Dec. 4, Boston, MA (1998).

  9. C. G. Worley, G. J. Havrilla, and P. S. Dunn, “Quantification of large scale micro-x-ray fluorescence elemental images,” Appl. Spectrosc. 55(11), pp. 1448–1454 (2001).

    Google Scholar 

  10. M.L. Hoppe, D. Harding, and R. B. Stephens, “Characterization of chemical dopants in ICF targets,” General Atomics Report GA-A22485, 1996, General Atomics, San Diego, CA.

    Google Scholar 

  11. G. J. Havrilla, “Applications of X-ray microfluorescence to materials analysis,” X-Ray Spectrom. 26(6), pp. 364–373 (1997).

    Google Scholar 

  12. N. Gao, I. Yu. Ponomarev, Q. F. Xiao, W. M. Gibson, and D. A. Carpenter, “Monolithic polycapillary focusing optics and their applications in microbeam X-ray fluorescence,” Appl. Phys. Lett. 69(11), pp. 1529–1531 (1996).

    Google Scholar 

  13. C. G. Worley and G. J. Havrilla, “Micro-X-ray fluorescence characterization of mixed oxide fuel surrogate feed material,” Anal. Chem. 70(14), pp. 2957–2963 (1998).

    Google Scholar 

  14. J. R. Schoonover, F. Weesner, G. J. Havrilla, M. Sparrow, and P. Treado, “Integration of elemental and molecular imaging to characterize heteogeneous inorganic materials,” Appl. Spectrosc. 52(12), pp. 1505–1514 (1998).

    Google Scholar 

  15. J. R. Schoonover and G. J. Havrilla, “Combining X-ray fluorescence spectrometry and vibrational microscopy to assess highly heterogeneous, actinide-contaminated materials,” Appl. Spectrosc. 53(3), pp. 257–265 (1999).

    Google Scholar 

  16. S. Bichlmeier, K. Janssens, J. Heckel, D. Gibson, P. Hoffmann, and H. M. Ortner, “Component selection for a compact micro-XRF spectrometer,” X-Ray Spectrom. 30, pp. 8–14 (2001).

    Google Scholar 

  17. E. P. Bertin, Introduction to X-Ray Spectrometric Analysis, p. 351, 1978, Plenum Press, New York, NY.

    Google Scholar 

  18. E. P. Bertin, Introduction to X-ray Spectrometric Analysis, p. 45, 1978, Plenum Press, New York, NY.

    Google Scholar 

  19. E. P. Bertin, Introduction to X-Ray Spectrometric Analysis, p. 44, 1978, Plenum Press, New York, NY.

    Google Scholar 

  20. C. T. Chantler, K. Olsen, R. A. Dragoset, A. R. Kishore, S. A. Kotochigova, and D. S. Zucker, X-Ray Form Factor, Attenuation and Scattering Tables, Version 2.0, National Institute of Standards and Technology, Gaithersburg, MD, 2003. Available at http://physics.nist.gov/ffast.

    Google Scholar 

  21. A. C. Thompson and D. Vaughan, editors, X-Ray Data Booklet, 2nd ed., 2001, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA.

    Google Scholar 

  22. A. Seaman, Analysis Depth for µ-EDXRF Methods, EDAX Eagle-II µ-Probe Application Note, EDAX, Inc., Mahwa, NJ, 2000.

    Google Scholar 

  23. B. McLemore, Private Communication (May 2003), Spin Forge, El Segundo, CA.

    Google Scholar 

  24. P. Thevenaz, “Turbo Registrationplugin for ImageJ software, 2003, Swiss Federal Institute of Technology, Lausanne, Switzerland. Available at: http://bigwww.epfl.ch/thevenaz/ turboreg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doering, E.R., Havrilla, G.J. & Miller, T.C. Disilicide Diffusion Coating Inspection by Micro X-Ray Fluorescence Imaging. Journal of Nondestructive Evaluation 23, 95–105 (2004). https://doi.org/10.1023/B:JONE.0000048865.96417.bc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JONE.0000048865.96417.bc

Navigation