Skip to main content
Log in

An Overview on the Mechanical Behaviour of Biodegradable Agricultural Films

  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The mechanical behavior of various types of biodegradable materials depends, mainly, on their chemical composition and the application conditions. Various additives are added into the bioblends to improve their properties, which sometimes even reach the levels of the conventional plastics. It is well known that the environmental conditions during production, storage, and usage of these materials influence their mechanical properties. Ageing during the useful lifetime also causes great losses in the elongation. In the present paper, the overall mechanical behavior of biodegradable films, which may be considered suitable for agricultural applications, but also of partially biodegradable films, is reviewed and analyzed. Selected critical mechanical properties of films before their exposure to biodegradation are investigated and compared against those of conventional agricultural films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Chandra and R. Rustgi (1998) Prog. Polym. Sci. 23, 1273–1335.

    Google Scholar 

  2. P. A. Dilara and D. Briassoulis (2000) J. Agr. Eng. Res. 76, 309–321.

    Google Scholar 

  3. R. S. Tocchetto, R. S. Benson, and M. Dever (2001) J. Polym. Environ. 9, 57–62.

    Google Scholar 

  4. J. K. Willett (1994) J. Appl. Polym. Sci. 54, 1685–1695.

    Google Scholar 

  5. J. W. Cho, K. S. Woo, B. C. Chun, and J. S. Park (2001) Eur. Polym. J. 37, 1227–1232.

    Google Scholar 

  6. B. Jaserg, C. Swanson, T. Nelsen, and W. Doane (1992) J. Polym. Mater. 9, 153–162.

    Google Scholar 

  7. J. W. Lawton (1996) Carb. Polym. 29, 203–208.

    Google Scholar 

  8. E. Cranston, J. Kawada, S. Raymond, F. G. Morin, and R. H. Marchessault (2003) Biomacromolecules (in press).

  9. R. Narayan, www.msu.edu/user/narayan.

  10. E. T. Reese (1957) Ind. Eng. Chem. 49, 89.

    Google Scholar 

  11. R. M. Gardener, C. M. Buchman, R. Komark, D. Dorschel, C. Boggs, and A. W. White (1994) J. Appl. Polym. Sci. 52, 1477.

    Google Scholar 

  12. P. A. Cantor and B. J. Mechalas (1969) J. Polym. Sci. Part C., 28, 225.

    Google Scholar 

  13. T. Chandy and C. P. Sharma (1990) Biomat. Art. Cells Art. Org. 18, 1–24.

    Google Scholar 

  14. R. A. A. Muzzarelli (1986) Chitin in Nature and Technology, Plenum Press, New York.

    Google Scholar 

  15. J. Hosokawa, M. Nishiyama, K. Yoshihara, and T. Kubo (1990) Ind. Eng. Chem. Res. 29, 800–805.

    Google Scholar 

  16. G. Pfister, M. Bahadir, and F. Korte (1986) J. Controll. Rel. 3, 229.

    Google Scholar 

  17. E. G. Posillico (1986) Biotechnology 4, 114–117.

    Google Scholar 

  18. G. A. King, A. J. Daugulis, P. Faulkner, and M. F. A. Goosen (1987) Biotechnol. Prog. 3, 231–240.

    Google Scholar 

  19. Y. Doi (1990) Microbial Polyester, VCH, New York.

    Google Scholar 

  20. A. J. Anderson, and E. A. Dawes (1990) Microb. Rev. 54, 450–472.

    Google Scholar 

  21. H. Brandl, R. A. Gross, R. W. Lenz, and R. C. Fuller (1990) Adv. Biochem Eng. Biotech. 41, 77–93.

    Google Scholar 

  22. P. B. Dave, N. J. Ashar, R. A. Gross, and S. P. McCarthy (1990) Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 31, 442.

    Google Scholar 

  23. S. N. Bhalakia, T. Patel, R. A. Gross, and S.P. McCarthy (1990) Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 31, 441.

    Google Scholar 

  24. Y. Doi, A. Tamaki, M. Knuioka, and Y. Nakamura (1986) J. Chem. Soc. Macromol. 19, 2860.

    Google Scholar 

  25. Y. Doi and C. Abe (1990) Macromolecules 23, 3705–3707.

    Google Scholar 

  26. S. Bloembergen, D. A. Holden, T. L. Bluhm, G. K. Hamer, and R. H. Marchessault (1989) Macromolecules 22, 1656.

    Google Scholar 

  27. M. M. Bitritto, J. P. Bell, G. M. Brenchle, S. J. Huang, and J. R. Knox (1979) J. Appl. Polym. Sci. Appl. Polym. Symp. 35, 405.

    Google Scholar 

  28. Y. Tokiwa and T. Suzuki (1981) J. Appl. Polym. Sci. 26, 441–448.

    Google Scholar 

  29. Y. Tokiwa and T. Suzuki (1971) Agric. Biol. Chem. 54, 603.

    Google Scholar 

  30. R. D. Fields, F. Rodriquez, and R. K. Finn (1974) J. Appl. Polym. Sci. 18, 3571–3579.

    Google Scholar 

  31. C. V. Benedict, J. A. Cameron, and S. J. Huang (1983) J. Appl. Polym. Sci. 28, 335–342.

    Google Scholar 

  32. C. G. Pitt, F. J. Chasaldo, J. M. Hibionada, D. M. Klimas, and A. Schindler (1981) Appl. Polym. Sci. 28, 3779–3787.

    Google Scholar 

  33. P. Jarret, W. J. Cook, J. P. Bell, S. J. Huang, and J. A. Cameron (1981) Polym. Am. Chem. Soc. Div. Polym. Chem. 22, 381.

    Google Scholar 

  34. Y. Tokiwa and T. Suzuki (1977) Nature 270, 76–78.

    Google Scholar 

  35. S. Kinoshita, S. Kageyama, K. Iba, Y. Yamada, and H. Okada (1975) Agric. Biol. Chem. 39, 1219.

    Google Scholar 

  36. T. Fukumura (1966) J. Biochem. 59, 537.

    Google Scholar 

  37. S. Kinoshita, S. Negora, M. Muramatsu, V. S. Bisaria, S. Sawada, and Okada (1977) Eur. J. Biochem. 80, 489.

    Google Scholar 

  38. R. T. Carby and A. M. Kaplan (1968) Appl. Microbiol. 16, 900.

    Google Scholar 

  39. K. W. Leong, B. C. Brott, and R. Langer (1984) J. Biomed. Mater. Res. 19, 941–955.

    Google Scholar 

  40. S. J. Huang, J. A. Pavlikso, B. Benicewicz, and E. Wringer (1981) Polym. Repr. Am. Chem. Sco. Div. Polym. Chem. 22, 56–57.

    Google Scholar 

  41. M. Morita and Y. Watanabe (1977) Agric. Biol. Chem. 41, 1535–1537.

    Google Scholar 

  42. Y. Watanabe, M. Morita, N. Hamade, and Y. Tsujisake (1975) Agric. Biol. Chem. 39, 2447–2448.

    Google Scholar 

  43. B. Barim and R. D. Dcanin (1973) Polym. Plast. Technol. Eng. 2, 1.

    Google Scholar 

  44. R. L. Reis, S. C. Mendes, and A. M. Cunha (1997) Polym. Int. 43, 347.

    Google Scholar 

  45. C. Bastioli, V. Belloti, L. Dei Giudice, and G. Gilli (1993) J. Environ. Polym. Degrad. 181, 1.

    Google Scholar 

  46. L. Chen, S. Imama, S. Gordon, and R. V. Greene (1997) J. Environ. Polym. Degrad. 5, 111–117.

    Google Scholar 

  47. P. J. Stenhouse, J. Ratto, and N. J. Schneider (1997) J. Appl. Polym. Sci. 64, 2613–2622.

    Google Scholar 

  48. A. El-Hadi, R. Schnabel, E. Straube, G. Muller, and S. Henning (2002) J. Polym. Test. 21, 665–674.

    Google Scholar 

  49. M. A. Kontis, G. S. O'Brien, and J. L. Willett (1995) J. Environ. Polym. Degrad. 3(2) 97–105.

    Google Scholar 

  50. R. L. Shogren (1995) J. Environ. Polym. Degrad. 3(2) 75–80.

    Google Scholar 

  51. S. Godbole, S. Gote, M. Latkar, and T. Chakrabarti (2003) Bioresource Technol. 86, 33–37.

    Google Scholar 

  52. J. A. Ratto, P. J. Stenhouse, M. Auerbach, J. Mitchell, and R. Farrell (1999) Polymer 40, 6777–6788.

    Google Scholar 

  53. Y. Aoyagi, Y. Doi, and T. Iwata (2002) Polym. Degrad. Stabil. 79, 209–216.

    Google Scholar 

  54. G. Scott and D. Gilead (1995) in Degradable Polymers: Principles and Applications, Chapman & Hall, London, pp. 247–258.

    Google Scholar 

  55. S. H. Imam, S. H. Gordon, R. L. Shogren, and R. V. Greene (1995) J. Environ. Poly. Degrad. 3(4) 205–213.

    Google Scholar 

  56. E. Psomiadou, I. Arvanitoyannis, G. Biliaderis, H. Ogawa, and N. Kawasaki (1997) Carb. Polym. 33, 227–242.

    Google Scholar 

  57. J. W. Lawton and G. F. Fanta (1994) Carb. Polym. 23, 275–280.

    Google Scholar 

  58. S. Parandoosh, and S. J. Hudson (1993) Appl. Polym. Sci. 48, 787–791.

    Google Scholar 

  59. M. Rutenberg and D. Solarek (1984) in Whistler R. L., Bemiller J., and Paschall E. (Eds.) Starch: Chemistry and Technology, Academic Press, New York, p. 311.

    Google Scholar 

  60. G. R. Ziegler, T. S. Nordmark, and S. E. Woodling (2003) Food Hydrocoll. 17, 487–494.

    Google Scholar 

  61. H. Haeder (1991) J. Agron Crop Sci. 166, 338–346.

    Google Scholar 

  62. G. R. Ziegler, T. S. Nordmark, S. E. Woodling (2003) Food Hydrocoll. 17, 487–494.

    Google Scholar 

  63. P. Myllarinen, A. Buleon, R. Lahtinen, and P. Forssell (2002) Carb. Polym. 48, 41–48.

    Google Scholar 

  64. B. Rioux, P. Lspas-Szabo, A. Ait-Kadi, M. A. Mateescu, and J. Juhasz (2002) Carb. Polym. 50, 371–378.

    Google Scholar 

  65. D. H. Kim, S. K. Na, and J. S. Park (2003) J. Appl. Polym. Sci. 88, 2100–2107.

    Google Scholar 

  66. D. H. Kim, S. K. Na, and J. S. Park (2003) J. Appl. Polym. Sci. 88(8), 2108–2117.

    Google Scholar 

  67. O. Martin, E. Schwach, L. Averous, and Y. Couturier (2001) Starch starke 53, 372–380.

    Google Scholar 

  68. I. Jakubowicz (2003) Polym. Degrad. Stabil. 80, 39–43.

    Google Scholar 

  69. T. Nakashima, C. Xu, Y. Bin, and M. Matsuo (2001) Colloid Polym Sci. 279, 646–654.

    Google Scholar 

  70. T. M. Thakore, S. Desai, B. D. Sarawade, and S. Devi (2001) Eur. Polym. J. 37, 151–160.

    Google Scholar 

  71. P. Matzinos, V. Tserki, C. Gianikouris, E. Pavlidou, and C. Panayiotou (2002) Eur. Polym. J. 38, 1713–1720.

    Google Scholar 

  72. P. Matzinos, V. Tserki, A. Kontoyiannis, and C. Panayiotou (2002) Polym. Degrad. Stabil. 77, 17–24.

    Google Scholar 

  73. R. Nawang, I. D. Danjaji, U. S. Ishiaku, H. Ismail, and Z. A. Mohd Ishak (2001) Polym. Test. 20, 167–172.

    Google Scholar 

  74. U. S. Ishiaku, K. W. Pang, W. S. Lee, and Z. A. Mohd Ishak (2002) Eur. Polym. J. 38, 393–401.

    Google Scholar 

  75. D. Dermirgoz, C. Elvira, J. F. Mano, A. M. Cunha, E. Riskin, and R. L. Reis (2000) Polym. Degrad. Stabil. 70, 161–170.

    Google Scholar 

  76. H. Yavuz and C. Babaç (2003) J. Polym. Environ. 1, 107–113.

    Google Scholar 

  77. M. Avella, M. E. Errico, P. Laurienzo, E. Martuscelli, M. Raimo, and R. Rimedio (2000) Polymer 41, 3875–3881.

    Google Scholar 

  78. E. Duquesne, D. Rutot, P. Degree, and P. Dubois (2001) Macromol. Symp. 175, 33–43.

    Google Scholar 

  79. L. Calandrelli, B. Immirzi, M. Malinconico, M. G. Volpe, A. Oliva, and F. Della Ragione (2000) Polymer 41, 8027–8033.

    Google Scholar 

  80. C. L. Jun (2000) J. Polym. Environ. 8, 33–37.

    Google Scholar 

  81. H. Shinoda, Y. Asou, T. Kashima, T. Kato, Y. Tseng, and T. Yagi (2003) Polym. Degrad. Stabil. 80, 241–250.

    Google Scholar 

  82. Y. Teramoto and Y. Nishio (2003) Polymer 44, 2701–2709.

    Google Scholar 

  83. B. S. Kayserilioglu, U. Bakir, L. Yilmaz, and N. Akkas (2003) Bioresource Technol. 87, 239–246.

    Google Scholar 

  84. S. K. Park, N. S. Hettiarachchy, and L. Were (2000) J. Agri. Food Chem. 48, 3027–3031.

    Google Scholar 

  85. F. Ayhllon-Meixueiro, C. Vaca-Garcia, and F. Silvestre (2000) J. Agri. Food Chem. 48, 3032–3036.

    Google Scholar 

  86. V. Micard, R. Belamri, M. H. Morel, and S. Guilbert (2000) J. Agri. Food Chem. 48, 2948–2953.

    Google Scholar 

  87. J. H. Jagannath, C. Nanjappa, D. K. Das Gupta, and A. S. Bawa (2003) J. Appl. Polym. Sci. 88, 64–71.

    Google Scholar 

  88. S. Bonhommea, A. Cuerb, A.-M. Delortb, J. Lemairea, M. Sancelmeb, and G. Scottc (2003) Polym. Degrad. Stabil. 81, 441–452.

    Google Scholar 

  89. E. Chiellini, A. Corti, and Graham Swift (2003) Polym. Degrad. Stabil. 81, 341–351.

    Google Scholar 

  90. R. L. Shogren RL (2000) J. Sustain Agri. 16, 33–47.

    Google Scholar 

  91. Otey, F. H. (1976) Polym. Plast. Technol. Eng. 7, 221.

    Google Scholar 

  92. R. P. Westhoff, R. H. Otey, C. L. Mehltretter, and C. R. Russell (1974) Ind. Eng. Chem. Prod. Res. Dev. 13, 123.

    Google Scholar 

  93. W. C. Fernando, K. Suyama, K. Itoh, H. Tanaka, and H. Yamamoto (2002) Soil Sci. Plant Nutr. 48, 701–709.

    Google Scholar 

  94. P. Halley, R. Rutgers, S. Coombs, J. Kettels, J. Gralton, G. Christie, M. Jenkins, H. Beh, K. Griffin, R. Jayasekara, and G. Lonergan, Starch Starke 53, 362–367.Author please provide missing information

  95. Comite Europeen de Normalisation CEN/TC 249, (2001b). prEN 13655 (Draft European Standard), Plastics: Mulching Thermoplastic Films for Use in Agriculture and Horticulture. European Committee for Standardisation, Brussels.

    Google Scholar 

  96. Comite Europeen de Normalisation CEN/TC 249 (1998). Document prEN 13206:1998 Covering Thermoplastic Films for use in Agriculture and Horticulture, European Committee for Standardisation, Brussels.

    Google Scholar 

  97. D. Briassoulis, Biosystems Engin. (to be published).

  98. D. Briassoulis and A. Aristopoulou (2001), Polym Test. 20, 615–634.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briassoulis, D. An Overview on the Mechanical Behaviour of Biodegradable Agricultural Films. Journal of Polymers and the Environment 12, 65–81 (2004). https://doi.org/10.1023/B:JOOE.0000010052.86786.ef

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOOE.0000010052.86786.ef

Navigation