Skip to main content
Log in

Direct Synthesis of ZSM-5 and Mordenite Using Poly(ethylene glycol) as a Structure-Directing Agent

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

ZSM-5 (SiO2/Al2O3 = 55) and mordenite (SiO2/Al2O3 = 48) were synthesized directly using poly(ethylene glycol) (PEG 200) as a structure-directing agent. The PEG 200 molecules were occluded in the pores of ZSM-5 but not in mordenite. It is expected that the formation of ZSM-5 occurs via a layered phase such as magadiite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. van de Goor, P. Behrens, and J. Felsche, Micropor. Mater. 2, 493 (1994).

    Google Scholar 

  2. D. Witte, J. Patarin, J.L. Guth, and T. Cholley, Micropor. Mater. 10, 247 (1997).

    Google Scholar 

  3. S.I. Zones, in Synthesis of Porous Materals, Zeolites, Clays and Nanostructures, edited by M.L. Occelli and H. Kessler (Marcel Dekker, Inc., New York, NY, 1997), p. 93.

    Google Scholar 

  4. Keijspe, C.J.J. den Ouden, and M.F.M. Post, Stud. Surf. Sci. Catal. 49B, 237 (1989).

    Google Scholar 

  5. F. Delprato, L. Delmotte, J. L. Guth, and L. Huve, Zeolites 10, 546 (1990).

    Google Scholar 

  6. M.W. Anderson, K.S. Pachis, F. Prebin, S.W. Carr, O. Terasaki, T. Ohsuna, and V. Alfreddson, J. Chem. Soc., Chem. Commun. 1660 (1991).

  7. M.J. Annen, D. Young, J.P. Arhancet, and M.E. Davis, Zeolites 11, 98 (1991).

    Google Scholar 

  8. F. Dougnier, J. Patarin, and J.L. Guth, Zeolites 12, 160 (1992).

    Google Scholar 

  9. F. Dougnier, J. Patarin, J.L. Guth, and D. Anglerot, Zeolites 13, 122 (1993).

    Google Scholar 

  10. S.L. Burkett and M.E. Davis, Micropor. Mater. 1, 265 (1993).

    Google Scholar 

  11. E.J.P. Feijen, K. De Vadder, M.H. Bosschaerts, J.L. Livens, J.A. Martens, P.J. Grobet, and P.A. Jacobs, J. Am. Chem. Soc. 116, 2950 (1994).

    Google Scholar 

  12. T. Chatelain, J. Patarin, E. Fousson, M. Soulard, J.L. Guth, and P. Schulz, Micropor. Mater. 4, 231 (1995).

    Google Scholar 

  13. E.J.P. Feijen, J.A. Martwns, and P.A. Jacobs, J. Chem. Soc., Faraday Trans. 92, 3281 (1996).

    Google Scholar 

  14. J. Weitkemp and R. Schumacher, in Proc. 9th Inter. Zeolite Conf., edited by R. von Ballmoos, J.B. Higgins, and M.M.J. Treacy (Butterworth-Heimemann, Stoneham, 1993), p. 353.

    Google Scholar 

  15. C. Baerlocher, L.B. McCusker, and R. Chiappetta, Micropor. Mater. 2, 269 (1994).

    Google Scholar 

  16. K.J. Balkus Jr. and J. Shi, Micropor. Mater. 11, 325 (1997).

    Google Scholar 

  17. T. Chatelain, J. Patarin, E. Brendlé, F. Dougnier, J.L. Guth, and P. Schulz, Stud. Surf. Sci. Catal. 105, 173 (1997).

    Google Scholar 

  18. E.J.P. Feijen, B. Matthijs, P.J. Grobet, J.A. Martens, and P.A. Jacobs, Stud. Surf. Sci. Catal. 105, 165 (1997).

    Google Scholar 

  19. T. Chatelain, J. Patarin, E. Fousson, M. Soulard, L.J. Guth, and P. Schulz, Micropor. Mater. 4, 231 (1994).

    Google Scholar 

  20. T. Chatelain, J. Patarin, R. Farré, O. Périgny, and P. Schulz, Zeolites 16, 328 (1996).

    Google Scholar 

  21. E.W. Valyocsik, US Patent No. 5,670,131 (1997).

  22. D.F. Shantz, A. Burton, and R.F. Lobo, Micropor. Mesopor. Mater. 31, 61 (1999).

    Google Scholar 

  23. Japan Patent No.59,026,924 (1984).

  24. Y. Long, H. He, P. Zheng, G. Wu, and B. Wang, J. Inclusion Phenom. 5, 533 (1987).

    Google Scholar 

  25. D.M. Bibby and M.P. Dale, Nature 317, 157 (1985).

    Google Scholar 

  26. M. Taramasso, G. Perego, and B. Natari, France Patent No. 2,478,063 (1981).

  27. N. Kanno, M. Miyake, and M. Sato, Zeolites 14, 625 (1994).

    Google Scholar 

  28. S. Yang, A.G. Vlessidis, and N.P. Evmirdis, Micropor. Mater. 9, 273 (1997).

    Google Scholar 

  29. J.L. Casci, B.M. Lowe, and T.V. Whittam, Europe Patent No. 42,225 (1981).

  30. S.L. Burkett and M.E. Davis, Micropor. Mater. 1, 265 (1993).

    Google Scholar 

  31. F. Feng, Master Thesis, The University of Texas as Dallas (2002).

  32. F. Feng and K.J. Balkus, Jr., J. Porous Mater. 10, 5 (2003).

    Google Scholar 

  33. S. Inagaki, Y. Fukushima, and K. Kuroda, J. Chem. Soc., Chem. Commun. 680 (1993).

  34. P.J. Hogan, UK Patent No. 2,125,390A (1983).

  35. S.I. Zones, US Patent No. 4,626,421 (1986).

  36. S.I. Zones, US Patent No. 4,676,958 (1987).

  37. S.I. Zones, US Patent No. 4,689,207 (1987).

  38. G. Pál-borbély, H.K. Beyer, Y. Kiyozumi, and F. Mizukami, Micropor. Mater. 11, 45 (1997).

    Google Scholar 

  39. G. Pál-borbély, H.K. Beyer, Y. Kiyozumi, and F. Mizukami, Micropor. Mesopor. Mater. 22, 57 (1998).

    Google Scholar 

  40. G. Pál-borbély and H.K. Beyer, Stud. Surf. Sci. Catal. 125, 383 (1999).

    Google Scholar 

  41. G. Pál-borbély, Ágnes Szegedi, and H.K. Beyer, Micropor. Mesopor. Mater. 35/36, 573 (2000).

    Google Scholar 

  42. G. Onyestyák, G. Pál-borbély, and L.V.C. Rees, Micropor. Mesopor. Mater. 43, 73 (2001).

    Google Scholar 

  43. S. Shimizu, Y. Kiyozumi, K. Maeda, F. Mizukami, G. Pálborbély, and H. Beyer, Adv. Mater 8/9, 759 (1996).

    Google Scholar 

  44. M. Salou, Y. Kiyozumi, F. Mizukami, P. Nair, K. Maeda, and S. Niwa, J. Mater. Chem. 8, 2125 (1998).

    Google Scholar 

  45. M. Salou, Y. Kiyozumi, F. Mizukami, P. Nair, K. Maeda, and S. Niwa, Mol. Crystals Liquid Crystals Sci. and Tech. Section A: Mol. Crystals Liquid Crystals 322, 141 (1998).

    Google Scholar 

  46. Y. Ko, M.H. Kim, S.J. Kim, and Y.S. Uh, Korean J. Chem. Eng. 18, 392 (2001).

    Google Scholar 

  47. Y. Kiyozumi, M. Salou, and F. Mizukami, Stud. Surf. Sci. Catal. 142A, 231 (2002).

    Google Scholar 

  48. T. Selvam and W. Schwieger, Stud. Surf. Sci, Catal. 135, 411 (2001).

    Google Scholar 

  49. T. Selvam and W. Schwieger, Stud. Surf. Sci, Catal. 142A, 407 (2002).

    Google Scholar 

  50. W. Schwieger and T. Selvam, Germany Offen. No. DE 10,134,022 A1 (2003).

  51. F.X. Feng, T. Dou, Y.Z. Xiao, and J.H. Cao, J. Nat. Gas Chem. 5, 351 (1996).

    Google Scholar 

  52. S.I. Zones, Zeolites 9, 458 (1986).

    Google Scholar 

  53. M. Cheng, D. Tan, X. Liu, X. Han, X. Bao, and L. Lin, Micropor. Mesopor. Mater. 42, 307 (2001).

    Google Scholar 

  54. M.M.J. Treacy and J.B. Higgins (Eds.), Collection of Simulated XRD Powder Patterns for Zeolites, 4th ed. (Elsevier, Amsterdam, 2001).

    Google Scholar 

  55. J.C. Jansen, F.J. van der Gaag, and H. van Bekkum, Zeolites 4, 369 (1984).

    Google Scholar 

  56. Y. Huang, Z. Jiang, and W. Schweiger, Chem. Mater. 11, 1210 (1999).

    Google Scholar 

  57. P. Bodart, J.B. Nagy, E.G. Derouane, and Z. Gabelica, Stud. Surf. Sci. Catal. 18, 125 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, F., Balkus, K.J. Direct Synthesis of ZSM-5 and Mordenite Using Poly(ethylene glycol) as a Structure-Directing Agent. Journal of Porous Materials 10, 235–242 (2003). https://doi.org/10.1023/B:JOPO.0000011384.86964.e5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOPO.0000011384.86964.e5

Navigation