Skip to main content
Log in

Computation by Asynchronously Updating Cellular Automata

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A known method to compute on an asynchronously updating cellular automaton is the simulation of a synchronous computing model on it. Such a scheme requires not only an increased number of cell states, but also the simulation of a global synchronization mechanism. Asynchronous systems tend to use synchronization only on a local scale—if they use it at all. Research on cellular automata that are truly asynchronous has been limited mostly to trivial phenomena, leaving issues such as computation unexplored. This paper presents an asynchronously updating cellular automaton that conducts computation without relying on a simulated global synchronization mechanism. The two-dimensional cellular automaton employs a Moore neighborhood and 85 totalistic transition rules describing the asynchronous interactions between the cells. Despite the probabilistic nature of asynchronous updating, the outcome of the dynamics is deterministic. This is achieved by simulating delay-insensitive circuits on it, a type of asynchronous circuit that is known for its robustness to variations in the timing of signals. We implement three primitive operators on the cellular automaton from which any arbitrary delay-insensitive circuit can be constructed and show how to connect the operators such that collisions of crossing signals are avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. von Neumann, Theory of Self-Reproducing Automata (University of Illinois Press, 1966).

  2. E. F. Codd, Cellular Automata (Academic Press, New York, 1968).

    Google Scholar 

  3. E. R. Banks, Universality in cellular automata, IEEE 11th Ann. Symp. Switching and Automata Theory (1970), pp. 194–215.

  4. T. Serizawa, Three-state Neumann neighbor cellular automata capable of constructing self-reproducing machines, Syst. Comput. Japan 18:33–40 (1986).

    Google Scholar 

  5. K. Morita and S. Ueno, Computation universal models of 2D 16-state reversible partitioned cellular automata, IEICE Trans. Inf. Syst. E75-D:141–147 (1992).

    Google Scholar 

  6. C. G. Langton, Self-reproduction in cellular automata, Physica D 10:135–144 (1984).

    Google Scholar 

  7. N. Margolus, Physics-like models of computation, Physica D 10:81–95 (1984).

    Google Scholar 

  8. N. Margolus, Crystalline computation, in Feynman and Computation (Addison—Wesley, 1998).

  9. M. Biafore, Cellular automata for nanometer-scale computation, Physica D 70:415–433 (1994).

    Google Scholar 

  10. M. A. Smith, Y. Bar-Yam, Y. Rabin, N. Margolus, T. Toffoli, and C. H. Bennett, Cellular automaton simulation of polymers, Mat. Res. Soc. Symp. Proc. 248:483–488 (1992).

    Google Scholar 

  11. D. H. Rothman and J. M. Keller, Immiscible cellular-automaton fluids, J. Statist. Phys. 52:1119–1127 (1988).

    Google Scholar 

  12. B. A. Huberman and N. S. Glance, Evolutionary games and computer simulations, Proc. Natl. Acad. Sci. USA 90:7715–7718 (1993).

    Google Scholar 

  13. H. Bersini and V. Detours, Asynchrony induces stability in cellular automata based models, in Artificial Life IV, Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems, R. A. Brooks and P. Maes, eds. (MIT Press, Cambridge, 1994), pp. 382–387.

    Google Scholar 

  14. E. A. Di Paolo, Rhythmic and non-rhythmic attractors in asynchronous random Boolean networks, BioSystems 59:185–195 (2001).

    Google Scholar 

  15. M. A. Nowak and R. M. May, Evolutionary games and spatial chaos, Nature 359:826–829 (1992).

    Google Scholar 

  16. T. E. Ingerson and R. L. Buvel, Structures in asynchronous cellular automata, Physica D 10:59–68 (1984).

    Google Scholar 

  17. H. J. Blok and B. Bergersen, Synchronous versus asynchronous updating in the “game of life,” Phys. Rev. E 59:3876–3879 (1999).

    Google Scholar 

  18. B. Schönfisch and A. de Roos, Synchronous and asynchronous updating in cellular automata, BioSystems 51:123–143 (1999).

    Google Scholar 

  19. S. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theor. Biol. 22:437–467 (1969).

    Google Scholar 

  20. I. Harvey and T. Bossomaier, Time out of joint: Attractors in asynchronous random boolean networks, in Proceedings of the Fourth European Conference on Artificial Life, P. Husbands and I. Harvey, eds. (MIT Press, Cambridge, 1997), pp. 67–75.

    Google Scholar 

  21. S. F. Edwards and P. W. Anderson, Theory of spin glasses, J. Phys. F 5:965–974 (1975).

    Google Scholar 

  22. E. T. Gawlinski, M. Grant, J. D. Gunton, and K. Kaski, Growth of unstable domains in the two-dimensional Ising model, Phys. Rev. B 31:281–286 (1985).

    Google Scholar 

  23. H. A. Ceccatto, Effective discrete-time dynamics in Monte Carlo simulations, Phys. Rev. B 33:4734–4738 (1986).

    Google Scholar 

  24. K. Kaneko, Period-doubling of kink-antikink patterns, quasiperiodicity in antiferro-like structures and spatial intermittency in coupled map lattice—towards a prelude of a “Field Theory of Chaos,” Prog. Theor. Phys. 72:480–486 (1984).

    Google Scholar 

  25. H. Chaté and P. Manneville, Collective behaviors in spatially extended systems with local interactions and synchronous updating, Progr. Theor. Phys. 87:1–60 (1992).

    Google Scholar 

  26. E. D. Lumer and G. Nicolis, Synchronous versus asynchronous dynamics in spatial distributed systems, Physica D 71:440–452 (1994).

    Google Scholar 

  27. P. Marcq, H. Chaté, and P. Manneville, Universal critical behavior in two-dimensional coupled map lattices, Phys. Rev. Lett. 77:4003–4006 (1996).

    Google Scholar 

  28. P. Marcq, H. Chaté, and P. Manneville, Universality in Ising-like phase transitions of lattices of coupled chaos, Phys. Rev. E 55:2606–2627 (1997).

    Google Scholar 

  29. G. Abramson and D. H. Zanette, Globally coupled maps with asynchronous updating, Phys. Rev. E 58:4454–4460 (1998).

    Google Scholar 

  30. J. Rolf, T. Bohr, and M. H. Jensen, Directed percolation universality in asynchronous evolution of spatiotemporal intermittency, Phys. Rev. E 57:R2503–R2506 (1998).

    Google Scholar 

  31. N. Gupte, T. M. Janaki, and S. Sinha, Effect of asynchronicity on the universal behavior of coupled map lattices, arXiv:nlin.CD/0205020.

  32. S. Goss and J. Deneubourg, Autocatalysis as a source of synchronized rhythmical activity in social insects, Insects Soc. 35:310–315 (1988).

    Google Scholar 

  33. D. Cornforth, D. G. Green, D. Newth, and M. Kirley, Do artificial ants march in step? Ordered asynchronous processes and modularity in biological systems, in Artificial Life VIII, Proceedings of the Eighth International Workshop on Artificial Life, R. K. Standish, H. A. Abbass, and M. A. Bedau, eds. (MIT Press, Cambridge, 2002), pp. 28–32.

    Google Scholar 

  34. W. Freeman, Tutorial on neurobiology: From single neurons to brain chaos, Int. J. Bifurcation Chaos 2:451–482 (1992).

    Google Scholar 

  35. D. Green, Simulated fire spread in discrete fuels, Ecological Modeling 20:21–32 (1983).

    Google Scholar 

  36. P. Kourtz and W. O'Regan, A model for a small forest fire to simulate burned and burning areas for use in a detection model, Forest Science 17:163–169 (1971).

    Google Scholar 

  37. S. Hauck, Asynchronous design methodologies: An overview, Proc. IEEE 83:69–93 (1995).

    Google Scholar 

  38. A. Davis and S. M. Nowick, An introduction to asynchronous circuit design, Technical Report UUCS-97-013, Computer Science Department, University of Utah, Downloadable from www.cs.columbia.edu/async/publications.html

  39. P. Patra and D. S. Fussel, Efficient building blocks for delay insensitive circuits, Proc. International Symp. on Advanced Research in Asynchronous Circuits and Systems (1994), pp. 196–205.

  40. C. J. Myers, Asynchronous Circuit Design (Wiley, 2001).

  41. F. Peper, J. Lee, S. Adachi, and S. Mashiko, Laying out circuits on asynchronous cellular arrays: A step towards feasible nanocomputers? Nanotechnology 14:469–485 (2003).

    Google Scholar 

  42. J. Lee, F. Peper, S. Adachi, and K. Morita, Universal delay-insensitive circuits with bidirectional and buffering lines, to be published, 2003.

  43. P. Patra, S. Polonsky, and D. S. Fussell, Delay-insensitive logic for RSFQ superconductor technology, Proc. of the Third Int. Symp. on Adv. Res. in Asynchronous Circuits and Systems (IEEE CS Press, 1997), pp. 42–53.

  44. Y. Kameda, S. V. Polonsky, M. Maezawa, and T. Nanya, Self-timed parallel adders based on DI RSFQ primitives, IEEE Trans. Appl. Superconductivity 9:4040–4045 (1999).

    Google Scholar 

  45. C. Joachim, J. K. Gimzewski, and A. Aviram, Electronics using hybrid-molecular and mono-molecular devices, Nature 408:541–548 (2000).

    Google Scholar 

  46. A. J. Heinrich, C. P. Lutz, J. A. Gupta, and D. M. Eigler, Molecule cascades, Science 298:1381–1387 (2002).

    Google Scholar 

  47. C. S. Lent and P. D. Tougaw, A device architecture for computing with quantum dots, Proc. IEEE 85:541–557 (1997).

    Google Scholar 

  48. R. P. Cowburn and M. E. Welland, Room temperature magnetic Quantum Cellular Automata, Science 287:1466–1468 (2000).

    Google Scholar 

  49. P. Gács, Deterministic computations whose history is independent of the order of asynchronous updating, Tech. Report, Computer Science Department, Boston University (1997).

  50. P. Orponen, Computing with truly asynchronous threshold logic networks, Theor. Comp. Sci. 174:123–136 (1997).

    Google Scholar 

  51. K. Nakamura, Asynchronous cellular automata and their computational ability, Systems, Computers, Controls 5:58–66 (1974)

    Google Scholar 

  52. C. L. Nehaniv, Self-reproduction in asynchronous cellular automata, Proc. NASA/DoD Conf. on Evolvable Hardware, EH'02 (2002), pp. 201–209.

  53. T. Toffoli, Integration of the phase-difference relations in asynchronous sequential networks, in Proc. of the Fifth Colloquium on Automata, Languages, and Programming (ICALP), Lecture Notes in Computer Science (LNCS 62), G. Ausiello and C. Böhm, eds. (Springer, 1978), pp. 457–463.

  54. J. Lee, S. Adachi, F. Peper, and K. Morita, Asynchronous game of life, to be published, 2003.

  55. F. Peper, T. Isokawa, N. Kouda, and N. Matsui, Self-timed cellular automata and their computational ability, Future Generation Computer Systems 18:893–904 (2002).

    Google Scholar 

  56. R. M. Keller, Towards a theory of universal speed-independent modules, IEEE Trans. Comput. C-23:21–33 (1974).

    Google Scholar 

  57. J. Lee, S. Adachi, F. Peper, and K. Morita, Embedding universal delay-insensitive circuits in asynchronous cellular spaces, Fundamenta Informaticae, accepted, 2003.

  58. S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys. 55:601–644 (1983).

    Google Scholar 

  59. E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical Plays (Academic Press, 1982).

  60. M. Creutz, Confinement and the critical dimensionality of space-time, Phys. Rev. Lett. 43:553–556 (1979).

    Google Scholar 

  61. S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, IEEE Trans. Pattern Analysis and Machine Intelligence 6:721–741 (1984).

    Google Scholar 

  62. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equations of state calculations by fast computing machines, J. Chem. Phys. 21:1087–1092 (1953).

    Google Scholar 

  63. S. Adachi, J. Lee, and F. Peper, On signals in asynchronous cellular spaces, to be published, 2003.

  64. J. A. Brzozowski and J. C. Ebergen, On the delay-sensitivity of gate networks, IEEE Trans. Comput. 41:1349–1360 (1992).

    Google Scholar 

  65. A. J. Martin, The limitations to delay-insensitivity in asynchronous circuits, Proc. 6th MIT Conf. on Advanced Research in VLSI (MIT Press, Cambridge, 1990), pp. 263–278.

    Google Scholar 

  66. P. Reimann, Brownian motors: Noisy transport far from equilibrium, Phys. Rep. 361:57–265 (2002).

    Google Scholar 

  67. K. Kitamura, M. Tokunaga, A. H. Iwane, and T. Yanagida, A single myosin head moves along an actin filament with regular steps of 5.3 nanometers, Nature 397:129–134 (1999).

    Google Scholar 

  68. Swimming against the tide, news feature, Nature 408:764–766 (2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adachi, S., Peper, F. & Lee, J. Computation by Asynchronously Updating Cellular Automata. Journal of Statistical Physics 114, 261–289 (2004). https://doi.org/10.1023/B:JOSS.0000003112.54283.ac

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000003112.54283.ac

Navigation