Skip to main content
Log in

The Eulerian Limit for 2D Statistical Hydrodynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the 2D Navier–Stokes system, perturbed by a white in time random force, proportional to the square root of the viscosity. We prove that under the limit “time to infinity, viscosity to zero” each of its (random) solution converges in distribution to a non-trivial stationary process, formed by solutions of the (free) Euler equation, while the Reynolds number grows to infinity. We study the convergence and the limiting solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Bricmont, A. Kupiainen, and R. Lefevere, Exponential mixing for the 2D stochastic Navier-Stokes dynamics, Comm. Math. Phys. 230:87–132 (2002).

    Google Scholar 

  2. J. Beale, T. Kato, and A. Majda, Remarks on the breakdown of smoothness for the 3-D Euler equations, Comm. Math. Phys. 94:61–66 (1984).

    Google Scholar 

  3. P. Constantin and C. Foias, Navier-Stokes Equations (University of Chicago Press, Chicago, 1988).

    Google Scholar 

  4. J.-Y. Chemin, Perfect Incompressible Fluids (Oxford University Press, Oxford, 1998).

    Google Scholar 

  5. R. M. Dudley, Real Analysis and Probability (Wadsworth & Brooks/Cole, Pacific Grove, CA, 1989).

    Google Scholar 

  6. J.-P. Eckmann and M. Hairer, Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise, Comm. Math. Phys. 219:523–565 (2001).

    Google Scholar 

  7. W. E and J. C. Mattingly, Ergodicity for the Navier-Stokes equation with degenerate random forcing: Finite dimensional approximation, Comm. Pure Appl. Math. 54: 1386–1402 (2001).

    Google Scholar 

  8. W. E, J. C. Mattingly, and Ya. G. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation, Comm. Math. Phys. 224:83–106 (2001).

    Google Scholar 

  9. G. Gallavotti, Foundations of Fluid Dynamics (Springer-Verlag, Berlin, 2001).

    Google Scholar 

  10. Ph. Hartman, Ordinary Differential Equations (Wiley, New York, 1964).

    Google Scholar 

  11. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes (North-Holland, Amsterdam, 1989).

    Google Scholar 

  12. R. H. Kraichnan and D. Montgomery, Two-dimensional turbulence, Rep. Prog. Phys. 43: 547–619 (1980).

    Google Scholar 

  13. R. H. Kraichnan, Inertial ranges in two-dimensional turbulence, Phys. Fluids 10: 1417–1423 (1967).

    Google Scholar 

  14. S. B. Kuksin and A. Shirikyan, Stochastic dissipative PDE's and Gibbs measures, Comm. Math. Phys. 213:291–330 (2000).

    Google Scholar 

  15. S. B. Kuksin and A. Shirikyan, A coupling approach to randomly forced nonlinear PDE's, Comm. Math. Phys. 221:351–366 (2001).

    Google Scholar 

  16. S. B. Kuksin and A. Shirikyan, Coupling approach to white-forced nonlinear PDE's, J. Math. Pures Appl. 81:567–602 (2002).

    Google Scholar 

  17. S. B. Kuksin, Ergodic theorems for 2D statistical hydrodynamics, Rev. Math. Phys. 14: 585–600 (2002).

    Google Scholar 

  18. E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, Vol. 14 (AMS, Providence, 1997).

    Google Scholar 

  19. J. Mattingly, Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics, Comm. Math. Phys. 230:421–462 (2002).

    Google Scholar 

  20. N. Masmoudi and L.-S. Young, Ergodic theory of infinite dimensional systems with applications to dissipative parabolic PDE's, Comm. Math. Phys.:461–481 (2002).

  21. L. Onsager, Statistical hydrodynamics, Nuovo Cimento Suppl. 6:279–287 (1949)

    Google Scholar 

  22. R. Robert and J. Sommeria, Statistical equilibrium states for two-dimensional flows, J. Fluid Mech. 229:291–310 (1994).

    Google Scholar 

  23. A. Shirikyan, Analyticity of solutions for randomly forced two-dimensional Navier- Stokes equations, Russian Math. Surveys 57:785–799 (2002).

    Google Scholar 

  24. M. I. Vishik and A. V. Fursikov, Mathematical Problems in Statistical Hydromechanics (Kluwer, Dordrecht, 1988).

    Google Scholar 

  25. M. M. Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. École Norm. Sup. 36:769–812 (1999).

    Google Scholar 

  26. V. I. Yudovich, Non stationary flow of an ideal incompressible fluid, Zh. Vych. Mat. 3:1032–1066 (1963) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuksin, S.B. The Eulerian Limit for 2D Statistical Hydrodynamics. Journal of Statistical Physics 115, 469–492 (2004). https://doi.org/10.1023/B:JOSS.0000019830.64243.a2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000019830.64243.a2

Navigation