Skip to main content
Log in

Exchange properties of cyanide complexes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Some heavy metal ferrocyanides were prepared and their selectivity towards cesium was investigated. Many were found to have good ion exchange properties and some can be easily prepared in a granular form suitable for the use in a packed column operation. The ferrocyanides show high cesium uptake in various simulated processing solutions relevant to the treatment of radioactive wastes. The amount of cesium sorbed by these hexacyanoferrates exceeded 99%. They also possess a high selectivity for cesium in solutions of high salt concentration. Desorption of the sorbed cesium at various nitric acid concentrations have been investigated and it is concluded that cesium is eluted by a chemical reaction step as a consequence of the oxidation of the ferrocyanides. It has also been observed that ferrocyanides degrade in solutions of low pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Atomic Energy Agency, Treatment of Low-and Intermediate-Level Liquid Radioactive Wastes, Technical Reports Series, No. 236, IAEA, Vienna, 1984.

    Google Scholar 

  2. J. D. Navratil, Ion Exchange Technology in Spent Fuel Reprocessing, RFP-ABST-3639, Rockwell International Corp., Golden Co., 1985.

  3. M. Kubota, High Level Radioactive Waste and Spent Fuel Management, The American Society of Mechanical Engineers, New York, 1989, p. 537.

    Google Scholar 

  4. W. W. Schultz, Ion Exchange and Adsorption in Nuclear Chemical Engineering, AICLE Symp. Series, No. 233, Vol. 80, 1983, p. 96.

    Google Scholar 

  5. A. Nilchi, M. Ghanadi Maragheh, A. Khanchi, J. Separ. Sci. Technol., 34 (1999) 1833.

    Google Scholar 

  6. A. Nilchi, M. Ghanadi Maragheh, A. Khanchi, J. Radioanal. Nucl. Chem., 245 (2000) 589.

    Google Scholar 

  7. A. Nilchi, A. Khanchi, M. Ghanadi Maragheh, Talanta, 56 (2002) 383.

    Google Scholar 

  8. B. A. Phillips, E. W. Hooper, N. P. Moncton, Study of the Behaviour of Inorganic Ion Exchangers in the Treatment of Medium Active Effluents, AERE G-3857, 1986.

  9. I. L. Jenkins, Solvent Extr. Ion Exch., 2 (1984) 1.

    Google Scholar 

  10. C. Janardanan, S. M. K. Nair, C. P. Savariar, J. Radioanal. Nucl. Chem., 127 (1988) 21.

    Google Scholar 

  11. E. W. Hooper, Activity removal from aqueous waste streams by seeded ultrafiltration, in: Use of Inorganic Sorbents for Treatment of Liquid Radioactive Waste and Backfill of Underground Repositories, Czech, 1991, p. 69.

  12. G. S. Klisuranov, G. Gradev, I. Stefanova, A. Milusheva, Use of aluminosilicate minerals for the removal of radionuclides and heavy metals from aqueous wastes by sorption and in combination with precipitation process, in: Use of Inorganic Sorbents for Treatment of Liquid Radioactive Waste and Backfill of Underground Repositories, Czech, 1991, p. 15.

  13. V. Pekarek, V. Vesely, Talanta, 19 (1972) 1245.

    Google Scholar 

  14. A. K. De, A. S. Sen, J. Separ. Sci. Technol., 13 (1978) 517.

    Google Scholar 

  15. E. W. Hooper, B. A. Phillips, Report AERE-R 11088 Atomic Energy Research Establishment, Harwell, England, 1984.

    Google Scholar 

  16. H. Loewenschuss, Radioact. Waste Managem., 2 (1982) 327.

    Google Scholar 

  17. H. Arino, H. H. Kramer, J. Appl. Radiation Isotopes, 24 (1973) 197.

    Google Scholar 

  18. J. Lehto, R. Harjula, J. Wallace, J. Radioanal. Nucl. Chem., 111 (1987) 297.

    Google Scholar 

  19. J. B. Ayers, W. H. Waggoner, J. Inorg. Nucl. Chem., 33 (1971) 721.

    Google Scholar 

  20. W. E. Prout, E. R. Russell, H. J. Groh, J. Inorg. Nucl. Chem., 27 (1965) 473.

    Google Scholar 

  21. K. Watari, K. Imai, M. Izawa, J. Nucl. Sci. Technol., 4 (1967) 190; 5 (1968) 309; 6 (1969) 522.

    Google Scholar 

  22. J. Bastian, K. H. Lieser, Radiochim. Acta, 6 (1966) 216.

    Google Scholar 

  23. W. F. Hendrickson, G. K. Riel, Health Phys., 28 (1975) 17.

    Google Scholar 

  24. H. Mimura, J. Lehto, R. Harjula, J. Nucl. Sci. Technol., 34 (1997) 484.

    Google Scholar 

  25. H. Mimura, J. Lehto, R. Harjula, J. Nucl. Sci. Technol., 34 (1997) 582.

    Google Scholar 

  26. H. Mimura, J. Lehto, R. Harjula, J. Nucl. Sci. Technol., 34 (1997) 607.

    Google Scholar 

  27. E. H. Tusa, A. Paavola, R. Harjula, J. Lehto, Industrial scale removal of cesium with hexacyanoferrate exchanger: Process realization and test run, in: Proc. Symp. on Waste Management, Vol. 2, Tuson, 1993, p. 1687.

    Google Scholar 

  28. J. Lehto, R. Harjula, E. Tusa, A. Paavola, Industrial scale removal of cesium with hexacyanoferrate exchanger: Process development, in: Proc. Symp. on Waste Management, Vol. 2, Tuson, 1993, p. 1693.

    Google Scholar 

  29. R. Harjula, J. Lehto, Industrial scale process for the removal of 137Cs utilizing hexacyanoferrate-columns-development and test run, in: Proc. of the Ion-Ex '93 Conf., Wrexham, UK, 1993.

  30. J. Lehto, R. Harjula, Solvent Extr. Ion Exch., 5 (1987) 343.

    Google Scholar 

  31. M. M. Ishfaq, H. M. A. Karim, M. A. Khan, J. Radioanal. Nucl. Chem., 159 (1992) 335.

    Google Scholar 

  32. A. Bellomo, Talanta, 17 (1970) 1109.

    Google Scholar 

  33. M. T. Ganzerli Valentini, S. Meloni, V. Maxia, J. Inorg. Nucl. Chem., 34 (1972) 1427.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilchi, A., Malek, B., Ghanadi Maragheh, M. et al. Exchange properties of cyanide complexes. Journal of Radioanalytical and Nuclear Chemistry 258, 457–462 (2003). https://doi.org/10.1023/B:JRNC.0000011738.46843.ff

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JRNC.0000011738.46843.ff

Keywords

Navigation