Skip to main content
Log in

Thermal degradation of a composite solid propellant examined by DSC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition of ammonium perchlorate (AP)/hydroxyl-terminated-polybutadiene (HTPB), the AP/HTPB solid propellant, was studied at different heating rates in dynamic nitrogen atmosphere. The exothermic reaction kinetics was studied by differential scanning calorimetry (DSC) in non-isothermal conditions. The Arrhenius parameters were estimated according to the Ozawa method. The calculated activation energy was 134.5 kJ mol-1, the pre-exponential factor, A, was 2.04×1010 min-1 and the reaction order for the global composite decomposition was estimated in 0.7 by the kinetic Shimadzu software based on the Ozawa method. The Kissinger method for obtaining the activation energy value was also used for comparison. These results are discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Herder, F. P. Weterings and W. P. C. de Klerk, J. Therm. Anal. Cal., 72 (2003) 921.

    Article  CAS  Google Scholar 

  2. W. P. C. de Klerk, C. Popescu and A. E. D. M. van der Heijden, J. Therm. Anal. Cal., 72 (2003) 955.

    Article  CAS  Google Scholar 

  3. E. L. M. Krabbendam-La Haye, W. P. C. de Klerk, M. Miszczak and J. Szymanowski, J. Therm. Anal. Cal., 72 (2003) 931.

    Article  CAS  Google Scholar 

  4. T. B. Brill and B. T. Budenz, Progress in Astronautics and Aeronautics, AIAA, 185 (2000) 3.

    CAS  Google Scholar 

  5. V. B. F. Mathot, J. Therm. Anal. Cal., 64 (2001) 15.

    Article  CAS  Google Scholar 

  6. J. Maijling, P. Šimon and V. Khunová, J. Therm. Anal. Cal., 67 (2002) 201.

    Article  Google Scholar 

  7. W. P. C. de Klerk, M. A. Schrader and A. C. van der Steen, J. Therm. Anal. Cal., 56 (1999) 1123.

    Article  CAS  Google Scholar 

  8. M. Stankovic, V. Kapor and S. Petrovic, J. Therm. Anal. Cal., 56 (1999) 1383.

    Article  CAS  Google Scholar 

  9. D. E. G. Jones, H. T. Feng, R. A. Augsten and R. C. Fouchard, J. Therm. Anal. Cal., 55 (1999) 9.

    Article  CAS  Google Scholar 

  10. H. E. Kissinger, Anal. Chem., 29 (1957) 1702.

    Article  CAS  Google Scholar 

  11. T. Ozawa, J. Thermal Anal., 2 (1970) 301.

    Article  CAS  Google Scholar 

  12. J. H. Flynn, Thermochim. Acta, 4 (1966) 323.

    CAS  Google Scholar 

  13. J. W. Park, H. P. Lee, H. T. Kim and K. O. Yoo, Polym. Degrad. Stabil., 67 (2000) 535.

    Article  CAS  Google Scholar 

  14. T. Ozawa, J. Therm. Anal. Cal., 64 (2001) 109.

    Article  CAS  Google Scholar 

  15. L. An-Lu and Y. Tsao-Fa, Thermochim. Acta, 186 (1991) 53.

    Article  Google Scholar 

  16. S. Shin-Ming, C. Sun-I and W. Bor-Horng, Thermochim. Acta, 223 (1993) 135.

    Article  Google Scholar 

  17. T. Sell, S. Vyazovkin and C. A. Wight, Combust. Flame, 119 (1999) 174.

    Article  CAS  Google Scholar 

  18. N. S. Cohen, R. W. Fleming and R. L. Derr, AIAA J., 6 (1974) 212.

    Article  Google Scholar 

  19. Z. Xiao-Bin, H. Lin-Fa and Z. Xiao-Ping, Progress in Astronautics and Aeronautics, AIAA, 185 (2000) 413.

    Google Scholar 

  20. T. Du, Thermochim. Acta, 138 (1989) 189.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Iha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocco, J.A.F.F., Lima, J.E.S., Frutuoso, A.G. et al. Thermal degradation of a composite solid propellant examined by DSC. Journal of Thermal Analysis and Calorimetry 75, 551–557 (2004). https://doi.org/10.1023/B:JTAN.0000027145.14854.f0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JTAN.0000027145.14854.f0

Navigation