Skip to main content
Log in

Genomics of Type 1 Diabetes Mellitus and Its Late Complications

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

In ethnic Russians, MHC (HLA) was shown to be the major locus determining the predisposition to type 1 diabetes mellitus (T1DM). To map the regions linked to T1DM, families with concordant or discordant sib pairs were selected from the Russian population of Moscow. With these families, linkage to T1DM was demonstrated for the CTLA4 gene (IDDM12, 2q32.1–q33), which codes for a T-cell surface antigen, and the PDCD2 gene (IDDM8, 6q25–q27), which is homologous to the mouse programmed cell death activator gene. Using polymorphic microsatellites, we could also observe the linkage to T1DM of regions 3q21–q25 (IDDM9) and 10p12.2 (IDDM10). Complex analysis of linkage and association of the polymorphic markers from region 11p13 in the vicinity of the catalase gene (CAT) based on the case/control groups and two groups of families allowed us to reveal a new T1DM locus; the linkage to this locus was not reported earlier for other populations. Diabetic polyneuropathy (DPN) proved to be associated with polymorphic markers Ala(–9)Val of the SOD2 gene, Arg213Gly of the SOD3 gene, and T(–262)C of the CAT gene, and with a polymorphic microsatellite located in the promoter region of the NOS2 gene. It has been supposed that one of the main risk factors of DPN development in patients with type 1 diabetes is oxidative stress arising in hyperglycemia because of increased production of superoxide radicals in mitochondria and insufficient activity of antioxidative enzymes. Diabetic nephropathy (DN) showed no association with the antioxidative enzyme genes. However, the association was observed for the insertion/deletion (I/D) polymorphism of ACE and the ecNOS34a/4b polymorphism of NOS3, two genes involved in controlling vascular tonus, as well as for the I/D polymorphism of APOB and the ε2/ε3/ε4 polymorphism of APOE, two genes involved in lipid transport. In addition, polymorphic microsatellites of chromosome 3q21–q25 proved to be closely associated with DN. The tightest association was established for D3S1550, carriers of allele 12 or genotype 12/14 having high risk of DN (OR = 4.85 and 6.25, respectively). Region 3q21–q25 perhaps contains a major gene determining DN development, while the other DN-associated genes mostly influence the progression of DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ovchinnikov I.V., Gavrilov D.K., Nosikov V.V., Debabov V.G. 1991. The use of the polymerase chain reaction to identify the allelic variants of the human HLA-DQA1 gene by hybridization with oligonucleotide probes specific to particular alleles. Mol. Biol. 25, 1266-1272.

    Google Scholar 

  2. Gavrilov D.K., Kuraeva T.L., Dedov I.I., Nosikov V.V. 1992. A study of the frequencies of allelic combinations of the HLA-DQA1 and DQB1 genes of the human major histocompatibility complex in patients with insulin-dependent diabetes mellitus and in a control group. Biotekhnologiya. 6, 19-23.

    Google Scholar 

  3. Gavrilov D.K., Kuraeva T.L., Dedov I.I., Sergeev A.S., Nosikov V.V. 1994. Frequency analysis of HLA-DQA1 and DQB1 gene alleles and susceptibility to type 1 diabetes mellitus in Russian patients. Acta Diabetologica. 31, 81-86.

    Google Scholar 

  4. Demurov L.M., Chistyakov D.A., Kondrat'ev Ya.Yu., Nosikov V.V. 1998. Polymorphism of the HLA-DQA1 and DQB1 genes in the Moscow population and in patients with diabetes mellitus type 1 or 2. Mol. Biol. 32, 964-969.

    Google Scholar 

  5. Todd J., Bell J., McDevitt H. 1987. DQ beta gene contributes to susceptibility and resistance to IDDM. Nature. 329, 599-604.

    Google Scholar 

  6. Khalil I., d'Auriol L., Gobet M., Morin L., Lepage V., Deschamps I., Park M., Degos L., Galibert F., Hors J. 1990. A combination of HLA-DQ beta Asp57-negative and HLA-DQ alpha Arg52 confers susceptibility to insulin-dependent diabetes mellitus. J. Clin. Invest. 85, 1315-1319.

    Google Scholar 

  7. Mein C.A., Esposito L., Dunn M.G., Johnson G.C., Timms A.E., Goy J.V., Smith A.N., Sebag-Montefiore L., Merriman M.E., Wilson A.J., Pritchard L.E., Cucca F., Barnett A.H., Bain S.C., Todd J.A. 1998. A search for type 1 diabetes susceptibility genes in families from the United Kingdom. Nature Genet. 19, 297-300.

    Google Scholar 

  8. Concannon P., Gogolin-Ewens K.J., Hinds D.A., Wapelhorst B., Morrison V.A., Stirling B., Mitra M., Farmer J., Williams S.R., Cox N.J., Bell G.I., Risch N., Spielman R.S. 1998. A second-generation screen of the human genome for susceptibility to insulin-dependent diabetes mellitus. Nature Genet. 19, 292-296.

    Google Scholar 

  9. Nistico L., Buzzetti R., Pritchard L.E., Van der Auwera B., Giovannini C., Bosi E., Larrad M.T., Rios M.S., Chow C.C., Cockram C.S., Jacobs K., Mijovic C., Bain S.C., Barnett A.H., Vandewalle C.L., Schuit F., Gorus F.K., Tosi R., Pozzilli P., Todd J.A. 1996. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Hum. Mol. Genet. 5, 1075-1080.

    Google Scholar 

  10. Nosikov V.V., Seregin Yu.A., Titovich E.V., Savost'yanov K.V., Zil'berman L.I., Chistyakov D.A., Kuraeva T.L., Dedov I.I. 2002. Genetic analysis of families with sibs suffering diabetes mellitus type 1. Sakharnyi Diabet. 1, 34-37.

    Google Scholar 

  11. Turakulov R.I., Chistyakov D.A., Chugunova L.A., Shamkhalova M.Sh., Shestakova M.V., Nosikov V.V., Debabov V.G., Dedov I.I. 1999. Polymorphism of microsatellite markers of the aldose reductase and catalase genes and genetic predisposition to diabetic nephropathy in insulin-dependent diabetes mellitus. Probl. Endokrinol. 45, 13-17.

    Google Scholar 

  12. Chistyakov D.A., Turakulov R.I., Shcherbacheva L.N., Mamaeva G.G., Balabolkin M.I., Nosikov V.V. 2000. Analysis of the D11S2008 polymorphism close to the catalase gene in insulin-dependent diabetes mellitus patients with hypertension or coronary heart disease of the Moscow population. Genetika. 36, 423-426.

    Google Scholar 

  13. Folsberg E., De Faire U., Morgenstern R. 1999. Low yield of polymorphisms from EST Blast searching: analysis of genes related to oxidative stress and verification of the P197L polymorphism in GPX1. Human Mutat. 13, 294-300.

    Google Scholar 

  14. Chistyakov D.A., Savost'yanov K.V., Titovich E.V., Voron'ko O.E., Kuraeva T.L., Dedov I.I., Nosikov V.V. 2001. Identification of a new locus associated with predisposition to diabetes mellitus type 1 in the vicinity of the catalase gene on chromosome 11. Sbornik otchetov za 2000 god podprogrammy “Genom cheloveka” (Collection of reports on the subprogram Human Genome of 2000). 137-138.

  15. Brownlee M. 2001. Biochemistry and molecular cell biology of diabetic complications. Nature. 414, 813-820.

    Google Scholar 

  16. Low P.A., Nickander K.K., Tritschler H.J. 1997. The role of oxidative stress and antioxidant in experimental diabetic neuropathy. Diabetes. 46, 38-42.

    Google Scholar 

  17. Shimoda-Matsubayashi S., Matsumine H., Kobayashi T., Nakagawa-Hattori, Y., Shimizu Y., Mizuno Y. 1996. Structural dimorhism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. Biochem. Biophys. Res. Commun. 226, 561-565.

    Google Scholar 

  18. Zotova E.V., Chistyakov D.A., Savost'yanova K.V., Bursa T.R., Galeev I.V., Strokov V.A., Nosikov V.V. 2003. Association of the SOD2 Ala(−9)Val and SOD3 Arg213Gly polymorphisms with diabetic polyneuropathy in diabetes mellitus type 1. Mol. Biol. 37, 345-348.

    Google Scholar 

  19. Rosenblum J.S., Gilula N.B., Lerner R.A. 1996. On signal sequence polymorphisms and diseases of distribution. Proc. Natl. Acad. Sci. USA. 93, 4471-4473.

    Google Scholar 

  20. Lemire B.D., Fankhauser C., Baker A., Schatz G. 1989. The mitochondrial targeting function of randomly generated peptide sequences correlates with predicted helical amphiphilicity. J. Biol. Chem. 264, 20206-20215.

    Google Scholar 

  21. Folz R.J., Peno-Green L., Grapo J.D. 1994. Identification of a homozygous missense mutation (Arg to Gly) in the critical binding region of the human EC-SOD gene (SOD3) and its association with dramatically increased serum enzyme levels. Hum. Mol. Genet. 12, 2251-2254.

    Google Scholar 

  22. Sandstrom J., Nilsson P., Karlsson K., Marklund S.L. 1994. 10-fold increase in human plasma extracellular superoxide dismutase content caused by a mutation in heparin-binding domain. J. Biol. Chem. 269, 19163-19166.

    Google Scholar 

  23. Forsberg L., Lyrenas L., de Faire U., Morgenstern R. 2001. A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Radic. Biol. Med. 30, 500-505.

    Google Scholar 

  24. Zotova E.V., Savost'yanov I.V., Chistyakov D.A., Bursa T.R., Galeev I.V., Strokov I.A., Nosikov V.V. 2004. Association of polymorphic markers of the antioxidative enzyme genes with diabetic polyneuropathy in type 1 diabetes mellitus. Mol. Biol. 38 (in press).

  25. Palmer R.M.J., Ferrige A.G., Moncada S. 1987. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 327, 524-526.

    Google Scholar 

  26. Hall A.V., Antoniou H., Wang Y., Cheung A.H., Arbus A.M., Olson S.L., Lu W.C., Kau C.L., Marsden P.A. 1994. Structural organization of the human neuronal nitric oxide synthase gene (NOS1). J. Biol. Chem. 269, 33082-33090.

    Google Scholar 

  27. Xu W., Liu L., Emson P.C., Harrington C.R., Charles I.G. 1997. Evolution of a homopurine-homopyrimidine pentanucleotide repeat sequence upstream of the human inducible nitric oxide synthase gene. Gene. 204, 165-170.

    Google Scholar 

  28. Wang X.L., Sim A.S., Badenhop R.F., McCredie R.M., Wilcken D.E.L. 1996. A smoking-dependent risk of coronary artery disease associated with a polymorphism of the endothelial nitric oxide synthase gene. Nature Med. 2, 41-45.

    Google Scholar 

  29. Yoshimura M., Yasue H., Nakayama M., Shimasaki Y., Sumida H., Sugiyama S., Kugiyama K., Ogawa H., Ogawa Y., Saito Y., Miyamoto Y., Nakao K., 1998. A missense Glu298-to-Asp variant in the endothelial nitric oxide synthase gene is associated with coronary spasm in the Japanese. Human Genet. 103, 65-69.

    Google Scholar 

  30. Zotova E.V., Voron'ko O.E., Chistyakov D.A., Bursa T.R., Galeev I.V., Strokov I.A., Nosikov V.V. 2004. Polymorphic markers of the NO synthase genes and genetic predisposition to diabetic polyneuropathy in type 1 diabetes mellitus. Mol. Biol. 38 (in press).

  31. Gorashko N.M., Shestakova M.V., Chistyakov D.A., Voron'ko O.E., Chugunova L.A., Babunova N.B., Shamkhalova M.Sh., Zotova E.V., Debabov V.G., Dedov I.I., Nosikov V.V. 2002. Association of polymorphic markers of candidate genes with diabetic nephropathy in type 1 diabetes mellitus. Sakharnyi Diabet. 1, 38-42.

    Google Scholar 

  32. Voron'ko O.I., Chistyakov D.A., Shestakova M.V., Chugunova L.A., Shamkhalova M.Sh., Nosikov V.V., Debabov V.G., Dedov I.I. 1999. Polymorphism of the endothelial NO synthase gene and genetic predisposition to nephropathy in insulin-dependent diabetes mellitus. Sakharnyi Diabet. 2, 2-3.

    Google Scholar 

  33. Tsukada T., Yokoyama K., Arai T., Takemoto F., Hara S., Yamada A., Kawaguchi Y., Hosoya T., Igari J. 1998. Evidence of association of the ecNOS gene polymorphism with plasma NO metabolite levels in humans. Biochem. Biophys. Res. Commun. 245, 190-193.

    Google Scholar 

  34. Zanchi A., Moczulski D.K., Hanna L.S., Wantman M., Warram J.H., Krolewski A.S. 2000. Risk of advanced diabetic nephropathy in type 1 diabetes is associated with endothelial nitric oxide synthase gene polymorphism. Kidney Int. 57, 405-413.

    Google Scholar 

  35. Boerwinkle E., Chan L. 1989. A three codon insertion/deletion polymorphism in the signal peptide region of the human apolipoprotein B (APOB) gene directly typed by the polymerase chain reaction. Nucleic Acids Res. 17, 4003.

    Google Scholar 

  36. Nosikov V.V., Dedov I.I. Molecular genetics of type 1 diabetes mellitus and its late complications. 2002. Sbornik trudov simpoziuma “Tekhnologii genodiagnostiki v prakticheskom zdravookhranenii” v ramkakh Mezhdunarodnoi konferentsii “Genomika, proteomika i bioinformatika dlya meditsiny (Proc. symp. “Gene diagnostic techniques in medicine” of the Int. conf. “Genomics, proteomics, and bioinformatics for medicine”). 59-61.

  37. Hixson J.E., Vernier D.T. 1990. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J. Lipid Res. 31, 545-548.

    Google Scholar 

  38. Araki S.C., Moczulski D.K., Hanna L., Scott L.J., Warram J.H., Krolewski A.S. 2000. APOE polymorphisms and the development of diabetic nephropathy in type 1 diabetes. Results of case-control and family-based studies. Diabetes. 49, 2190-2195.

    Google Scholar 

  39. Savost'yanov K.V., Chistyakov D.A., Shestakova M.V., Voron'ko O.E., Chugunova L.A., Shamkhalova M.Sh., Dedov I.I., Nosikov V.V. 2002. Identification of the locus associated with diabetic nephropathy in diabetes mellitus type 1. Mol. Biol. 36, 1015-1020.

    Google Scholar 

  40. Moczulski D.K., Rogus J.J., Antonellis A., Warram J.H., Krolewski A.S. 1998. Major susceptibility locus for nephropathy in type 1 diabetes on chromosome 3q. Results of a novel discordant sib-pair analysis. Diabetes. 47, 1164-1169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nosikov, V.V. Genomics of Type 1 Diabetes Mellitus and Its Late Complications. Molecular Biology 38, 128–139 (2004). https://doi.org/10.1023/B:MBIL.0000015148.57505.38

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MBIL.0000015148.57505.38

Navigation