Skip to main content
Log in

The Role of Weak Specific and Nonspecific Interactions in Enzymatic Recognition and Conversion of Long DNAs

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

According to the currently accepted model, enzymes searching for specific recognition sequences or structural elements (modified nucleotides, breaks, single-stranded DNA fragments, etc.) slide at a high rate along DNA. Such sliding is possible only if the enzymes possess sufficiently high affinity for all DNA, sequence notwithstanding. Therefore, significant differences in their affinity for specific and nonspecific DNA sequences are unlikely, and the formation of a complex between an enzyme and its target DNA is not a basic factor of enzyme specificity. To elucidate such factors, we have analyzed many DNA replication, DNA repair, topoisomerization, integration, and recombination enzymes using a number of physicochemical methods, including the method of stepwise increase in ligand complexity developed in our laboratory. It has been shown that high affinity of all studied enzymes for long DNAs is provided by the formation of many weak contacts of the enzyme with all nucleotide units covered by the protein globule. The main role lies in the contact between positively charged amino acid residues and internucleoside phosphate groups; however, the contribution of each contact is very small, and the full contact interface usually resembles that characteristic of interactions between oppositely charged biopolymer surfaces. In some cases, a significant contribution to the affinity is made through hydrophobic and/or van der Waals interactions of the enzymes with nucleotide bases. On the whole, such nonspecific interactions provide for five to eight orders of enzyme affinity for DNA, depending on the enzyme. Specific interactions of enzymes with long DNAs, in contrast to their contacts with small ligands, are usually weak and comparable in efficiency with weak nonspecific contacts. The sum of specific interactions most often provides for approximately one or, rarely, two orders of affinity. According to structural data, DNA binding to any of the investigated enzymes is followed by a stage of DNA conformation adjustment, which includes partial or complete DNA melting, deformation of its backbone, stretching, compression, bending or kinking, eversion of nucleotides from the DNA helix, etc. The full set of such changes is specific for each individual enzyme. The fact that all enzyme-dependent changes in DNA are effected through weak specific (rather than strong) interactions is very important. Enzyme-specific changes in DNA conformation are required for effective adjustment of reacting orbitals to an accuracy of 10°–15°, which is possible only in the case of specific DNAs. A transition from nonspecific to specific DNA leads to an increase in the reaction rate (k cat) by four to eight orders of magnitude. Thus, the stages of DNA conformation adjustment and catalysis proper provide for the high specificity of enzyme action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Nevinsky G.A. 1995. The important role of weak inter-actions in enzymatic recognition of long DNA and RNA molecules. Mol. Biol.29, 16–37.

    Google Scholar 

  2. Bugreev D.V., Nevinsky G.A. 1999. Potential of the method of stepwise increase in ligand complexity in studies of protein-nucleic acid interactions: Mecha-nisms of the functioning of some replication, repair, topoisomerization, and restriction enzymes. Biokhimiya. 64, 291–305.

    Google Scholar 

  3. Nevinsky G.A. 2003. Structural, thermodynamic, and kinetic basis of DNA-and RNA-dependent enzymes functioning. Important role of weak nonspecific addi-tive interactions between enzymes and long nucleic acids for their recognition and transformation. In: Protein Structures. Kaleidoscope of Structural Properties and Functions, Transworld Research Network, in press.

  4. Freemont P.S., Lane A.N., Sanderson M.R. 1991. Structural aspects of protein-DNA recognition. Biochem.J. 278, 1–23.

    Google Scholar 

  5. Struhl K. 1989. Helix-turn-helix, zinc-finger, and leucine-zipper motifs for eukaryotic transcriptional regulatory proteins. Trends Biochem. Sci. 14, 137–140.

    Google Scholar 

  6. Brennan R.G., Matthews B.W. 1989. Structural basis of DNA-protein recognition. Trends Biochem. Sci. 14, 286–290.

    Google Scholar 

  7. Steitz T.A. 1990. Structural studies of protein-nucleic acid interaction: The sources of sequence-specific bind-ing. Quart. Rev. Biophys. 23, 205–280.

    Google Scholar 

  8. Harrison S.C., Aggarwal A.K. 1990. DNA recognition by proteins with the helix-turn-helix motif. Annu. Rev. Biochem. 91, 933–969.

    Google Scholar 

  9. Frankel A.D., Matta J., Rio D.C. 1991. RNA-protein interactions. Cell. 67, 1041–1046.

    PubMed  Google Scholar 

  10. Savva R., McAuley-Hecht K., Brown T., Pearl L. 1995. The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature. 373, 487–489.

    PubMed  Google Scholar 

  11. Mol C.D., Arvai A.S., Sluppaug G., Kavli B., Alseth J., Krokan H., Tainer, J.A. 1995 Crystal structure and mutational analysis of human uracil-DNA glycosylase: Structural basis for specificity and catalysis. Cell. 80, 869–878.

    PubMed  Google Scholar 

  12. Mol C.D., Arvai A.S., Sluppaug G., Kavli B., Alseth J., Krokan H., Tainer J.A. 1995. Crystal structure and mutational analysis of human uracil-DNA glycosylase: Structural basis for specificity and catalysis. Cell.80, 869–878.

    PubMed  Google Scholar 

  13. Mol C.D., Arvai A.S., Sanderson R.J., Sluppaug G., Kavli B., Krokan H.E., Mosbaugh D.W., Tainer J.A. 1995. Crystal structure of human uracil-DNA glycosy-lase in complex with a protein inhibitor: Protein mim-icry of DNA. Cell.82, 701–708.

    PubMed  Google Scholar 

  14. Warner H.R., Duncan B.K., Garrett C., Neuhardm J. 1981. Synthesis and metabolism of uracil-containing deoxyribonucleic acid in Escherichia coli. J. Bacteriol. 145, 687–695.

    Google Scholar 

  15. Drake J., Baltz R.M. 1976. The biochemistry of mutagenesis. Ann. Rev. Biochem. 45, 11–37.

    PubMed  Google Scholar 

  16. Knorre D.G., Godovikova T.I., Nevinsky G.A. 1995. Oligonucleotide and their derivatives as a tool to study protein-nucleic acids interaction. In: Evolutionary Bio-chemistry and Related Areas of Physicochemical Biol-ogy. Moscow: Bach Institute of Biochemistry and ANCO, pp. 297–313.

    Google Scholar 

  17. Olsen L.C., Asland R., Krokan H.E., Helland D.E. 1991. Human uracil-DNA glycosylase complements E. coliung mutants. Nucleic Acids Res. 19, 4473–4478.

    PubMed  Google Scholar 

  18. Varshaey V., Houtcheon T., van de Sande J.M. 1988. Sequence analysis, expression, and conservation of E. coli uracil DNA glycosylase and its gene (ung. J. Biol.Chem. 263, 7776–7784.

    PubMed  Google Scholar 

  19. Percival K.J., Klein M.V., Burgers P.M. 1989. Molecu-lar cloning and primary structure of the uracil-DNA-glycosylase gene from Saccharomyces cerevisiae. J. Biol. Chem. 264, 2593–2598.

    Google Scholar 

  20. Frederick C.A., Grable J., Melia M., Samudzi C., Jen-Jacobson L., Wang B.-C., Greene P., Boyer H.W., Rosenberg J.M. 1984. Kinked DNA in crystalline com-plex with EcoRI endonuclease. Nature. 309, 327–331.

    PubMed  Google Scholar 

  21. McClarin J.A., Frederick C.A., Wang B.-C., Greene P., Boyer H.W., Grable J., Rosenberg J.M. 1986. Structure of the DNA-EcoRI endonuclease recognition complex at 3 Å resolution. Science. 234, 44–59.

    Google Scholar 

  22. Kim Y., Grable J.C., Love R. 1990. Refinement of EcoRI endonuclease crystal structure: A revised protein chain tracing. Science. 249, 1307–1309.

    PubMed  Google Scholar 

  23. Lavrik O.I., Nevinsky G.A. 1987. Affinity modification of enzymes: Problems and prospects. Itogi Nauki Techn. Ser. Bioorg. Khim. 13, 3–172.

    Google Scholar 

  24. Lesser D.R., Kurpiewski M.R, Jen-Jacobson L. 1990. The energetic basis of specificity in the iEcoRI endonu-clease-DNA interaction. Science. 250, 776–786.

    PubMed  Google Scholar 

  25. Engler L.E., Sapienza P., Dorner L.F., Kucera R., Schildkraut I., Jen-Jacobson L., 2001. The energetics of the interaction of BamHI endonuclease with its recogni-tion site GGATCC. J. Mol. Biol. 307, 619–636.

    PubMed  Google Scholar 

  26. Engler L.E., Welch, K.K., Jen-Jacobson L. 1997. Spe-cific binding by EcoRV endonuclease to its DNA recog-nition site GATATC. J. Mol. Biol. 269, 82–101.

    PubMed  Google Scholar 

  27. Fersht A. 1985. Enzymes Structure and Mechanism. Academic Press, London.

    Google Scholar 

  28. Levina A.S., Nevinsky G.A., Lavrik O.I. 1985. DNA polymerase I from E. coli Studies on the mechanism of initiating substrate binding by using oligothymidylates with ethylated internucleotide phosphate groups. Bioorg. Khim. 11, 358–369.

    PubMed  Google Scholar 

  29. Veniaminova A.G., Levina A.S., Nevinsky G.A., Podust V.N. 1987. Comparison of ribo-and deoxyri-boprimers with respect to the efficiency of their interac-tion with DNA polymerase α from human placenta. Mol. Biol. 21, 1378–1385.

    Google Scholar 

  30. Lavrik O.I., Levina A.S., Nevinsky G.A., Podust V.N. 1987. Role of nucleoside components and internucle-otide phosphate groups of oligodeoxyribonucleotide template in its binding to human DNA polymerase alpha. FEBS Lett. 216, 225–228.

    PubMed  Google Scholar 

  31. Knorre D.G., Lavrik O.I., Nevinsky G.A. 1988. Pro-tein-nucleic acid interaction in reactions catalyzed with DNA polymerases. Biochimie. 70, 655–661.

    PubMed  Google Scholar 

  32. Kolocheva T.I., Nevinsky G.A., Volchkova V.A., Levina A.S., Khomov V.V., Lavrik O.I. 1989. DNA polymerase I (Klenow fragment): Role of the structure and length of a template in enzyme recognition. FEBS Lett. 248, 9--100.

    Google Scholar 

  33. Nevinsky G.A., Nemudraya A.V., Levina A.S., Khomov V.V. 1989. The algorithm of estimation of the Km values for primers of various structure and length in the polymerization reaction catalyzed by Klenow frag-ment of DNA polymerase I from E. coli. FEBS Lett. 258, 166–170.

    Google Scholar 

  34. Nevinsky G.A., Veniaminova A.G., Levina A.S., Podust V.N., Lavrik O.I., Holler E. 1990. Structure-function analysis of mononucleotides and short oligo-nucleotides in the priming of enzymatic DNA synthesis. Biochemistry. 29, 1200–1207.

    PubMed  Google Scholar 

  35. Kolocheva T.I., Nevinsky G.A., Levina A.S., Khomov V.V., Lavrik O.I. 1991. The mechanism of recognition of templates by DNA polymerases from pro-and eukaryotes as revealed by affinity modification data. J. Biomol. Struct. Dyn. 9, 169–186.

    Google Scholar 

  36. Ljach M.V., Kolocheva T.I., Gorn V.V., Levina A.S., Nevinsky G.A. 1992. The affinity of the Klenow frag-ment of E. coli DNA polymerase I to primers containing bases noncomplementary to the template and hairpin-like elements. FEBS Lett. 300, 18–20.

    PubMed  Google Scholar 

  37. Kolocheva T.I., Maksakova G.A., Zakharova O.D., Nevinsky G.A. 1996. The algorithm of estimation of the Km values for primers in DNA synthesis catalyzed by human DNA polymerase alpha. FEBS Lett. 399, 11--116.

    Google Scholar 

  38. Nevinsky G.A., Andreola M.-L., Yamkovoy V.I., Levina A.S., Barr Ph.J., Tarrago-Litvak L., Litvak S. 1992. Functional analysis of primers and templates in the synthesis of DNA catalyzed by human immunodefi-ciency virus type 1 reverse transcriptase. Eur. J. Bio-chem. 207, 351–358.

    Google Scholar 

  39. Andreola M-L., Nevinsky G.A., Barr Ph.j., Sarih-Cottin L., Bordier B., Fournier M., Litvak S., Tarrago-Litvak L. 1992. Interaction of tRNA Lys with the p66/p66 form of HIV-1 reverse transcriptase stimulates DNA polymerase and ribonuclease H activities. J. Biol. Chem. 267, 19356–19362.

    PubMed  Google Scholar 

  40. El Dirani-Diab R., Andreola M.-L., Nevinsky G.A., Tharaud D., Barr Ph.j., Litvak S. Tarrago-Litvak L. 1992. Biochemical characterization of the p51 sub-unit of human immunodeficiency virus reverse transcriptase in homo-and heterodimeric recombinant forms of the enzyme. FEBS Lett. 301, 23–28.

    PubMed  Google Scholar 

  41. Andreola M.-L., Dufour E., Tarrago-Litvak L., Yamko-voy V.I., Levina A.S., Barr Ph.J., Litvak S. Nevinsky G.A. 1993. Human immunodeficiency virus type-1 reverse transcriptase copies very short templates: Kinetic and crosslinking analysis. Biochim. Biophys. Acta. 1173, 147–154.

    PubMed  Google Scholar 

  42. Andreola M.-L., Tarrago-Litvak L., Levina A.S., Kolocheva T.I., Dirani-Diab R., Yamkovoy V.I., Khal-imskaya N.L., Barr P.J., Litvak S., Nevinsky G.A. 1993. Affinity labelling and functional analysis of the primer binding domain of HIV-1 reverse transcriptase. Bio-chemistry. 32, 3629–3637.

    Google Scholar 

  43. Vasilenko N.L., Bulychev N.V., Gorn V.V., Levina A.S., Nevinsky G.A. 1994. Recognition of uracil in DNA by uracil-DNA glycosylase from human placenta. Mol. Biol. 28, 1386–1393.

    Google Scholar 

  44. Vinogradova N.L., Bulychev N.V., Maksakova G.A., Johnson F., Nevinsky G.A. 1998. Uracil-DNA glycosy-lase: Interpretation of X-ray structure in the light of data of kinetic and thermodynamic study of the enzyme. Mol. Biol. 32, 498–508.

    Google Scholar 

  45. Kubareva E.A., Volkov E.M., Vinogradova N.L., Kanevsky I.A., Oretskaya T.S., Kuznetsova S.A., Brevnov M.G., Gromova E.S., Nevinsky G.A., Sha-barova Z.A. 1995. Modified substrates as probes for studying uracil-DNA glycosylase. Gene. 157, 167–171.

    PubMed  Google Scholar 

  46. Vasilenko N.L., Nevinsky G.A. 2003. Ways of the accu-mulation and repair of deoxyuridine residues in DNA of lower and higher organisms. Biokhimiya. 68, 165–183.

    Google Scholar 

  47. Kubareva E.A., Vasilenko N.L., Vorobjeva O.V., Volkov E.M., Oretskaya T.S., Korshunova G.A., Nevinsky G.A.1998. Role of DNA definite structural ele-ments in interaction with repair enzyme uracil-DNA glycosylase. Biochem. Mol. Biol. Int. 46, 597–606.

    PubMed  Google Scholar 

  48. Beloglazova N.G., Lokhova I.A., Maksakova G.A., Tsvetkov I.I., Nevinsky G.A. 1996. Apurinic/apyrimi-dinic endonuclease from human placenta: Recognition of apurinized DNA by the enzyme. Mol. Biol. 30, 22--229.

    Google Scholar 

  49. Ishchenko A.A., Bulychev N.V., Maksakova G.A., Johnson F., Nevinsky G.A. Recognition and conversion of single-and double-stranded substrates by 8-oxogua-nine DNA glycosylase from E. coli. Biokhimiya. 62, 240–248.

  50. Ishchenko A.A., Bulychev N.V., Zharkov D.O., Maksa-kova G.A., Johnson F., Nevinsky G.A. 1997. Isolation of 8-oxoguanine DNA glycosylase from E. coli and analysis of its substrate specificity. Mol. Biol. 31, 33--337.

    Google Scholar 

  51. Ishchenko A.A., Bulychev N.V., Maksakova G.A., Johnson F., Nevinsky G.A. 1998. Interaction of 8-oxoguanine DNA glycosylase from E. coliwith single-stranded deoxyribooligonucleotides and their com-plexes. Mol. Biol. 32, 549–558.

    Google Scholar 

  52. Ishchenko A.A., Koval V.V., Fedorova O.S., Douglas K.T., Nevinsky G.A. 1999. Structural require-ments of double and single stranded DNA substrates and inhibitors, including a photoaffinity label, of Fpg protein from E. coli. J. Biomol. Struct. Dyn. 17, 30--310.

    Google Scholar 

  53. Ishchenko A., Koval V., Fedorova O., Douglas K., Nev-insky G. 1999. Recognition of DNA by Fpg protein from Escherichia coli. J. Biomol. Struct. Dyn. 16, 1285–1286.

    Google Scholar 

  54. Ishchenko A.A., Bulychev N.V., Maksakova G.A., Johnson F., Nevinsky G.A. 1999. Single-stranded oli-godeoxyribonucleotides are substrates of Fpg protein from E. coli. IUBMB Life. 48, 613–618.

    Google Scholar 

  55. Ishchenko A.A., Vasilenko N.L., Sinitsina O.I., Yamko-voy V.I., Fedorova O.S., Douglas K.T., Nevinsky G.A. 2002. Thermodynamic, kinetic, and structural basis for recognition and repair of 8-oxoguanine in DNA by Fpg protein from E. coli. Biochemistry. 41, 7540–7548.

    Google Scholar 

  56. Fedorova O.S., Nevinsky G.A., Koval V.V., Ischenko A.A., Vasilenko N.L., Douglas K.T. 2002. Stopped-flow kinetic studies of the interaction between E. coliFpg protein and DNA substrates. Biochemistry. 41, 152--1528.

    Google Scholar 

  57. Zharkov O.D. Ishchenko A.A., Douglas K.T., Nevinsky G.A. 2003. Recognition of damaged DNA by E. coliFpg protein: Insights from structural and kinetic data. Mutat. Research. 531, 141–156.

    Google Scholar 

  58. Kolocheva T.I., Demidov S.A., Maksakova G.A., Nev-insky G.A. 1998. Interaction of EcoRI endonuclease with short specific and nonspecific oligonucleotides. Mol. Biol. 32,1025–1033.

    Google Scholar 

  59. Kolocheva T.I., Maksakova G.A., Bugreev D.D., Nev-insky G.A. 2001. Interaction of endonuclease EcoRI with short specific and nonspecific oligonucleotides. IUBMB Life. 51, 189–195.

    PubMed  Google Scholar 

  60. Nevinsky G.A., Bugreev D.V., Buneva V.N., Yasui Y., Nishizawa M., Andoh T. 1995. High affinity interaction of mammalian DNA topoisomerase I with short single- and double-stranded oligonucleotides. FEBS Lett. 368, 97–100.

    PubMed  Google Scholar 

  61. Bugreev D.V., Vasyutina E.L., Buneva V.N., Yasui Y., Nishizava M., Andoh T., Nevinsky G.A. 1997. High affinity interaction of mouse DNA topoisomerase I with di-and trinucleotides corresponding to specific sequences of supercoiled DNA cleaved chain. FEBS Lett. 407, 18–20.

    PubMed  Google Scholar 

  62. Bugreev D.V., Vasutina E.L., Kolocheva T.I., Buneva V.N., Andoh T., Nevinsky G.A. 1998. Interaction of human DNA topoisomerase I with specific sequence oligode-oxynucleotides. Biochimie. 80, 303–308.

    PubMed  Google Scholar 

  63. Bugreev D.V., Sinitsina O.I., Buneva V.N. 2003. Mech-anism of recognition of supercoiled DNA by eukaryotic DNA topoisomerases I: 1. Interaction of the enzymes with nonspecific oligonucleotides. Bioorg. Khim. 29, 163–174.

    PubMed  Google Scholar 

  64. Bugreev D.V., Buneva V.N., Sinitsina O.I., Nevinsky G.A. 2003. Mechanism of recognition of supercoiled DNA by eukaryotic DNA topoisomerases I: 2. Comparison of enzyme interactions with specific and nonspecific oligonucleotides. Bioorg. Khim. 29, 27--288.

    Google Scholar 

  65. Bugreev D.V., Buneva V.N., Nevinsky G.A. 2003. Mechanism of supercoiled DNA cleavage by human DNA topoisomerase I: Effect of ligand structure on the catalytic stage of the reaction. Mol. Biol. 37, 1–15.

    Google Scholar 

  66. Caumont A., Jamieson G., Richard de Soultrait V., Parissi V., Fournier M., Zakharova O.D., Bayandin R., Litvak S., Tarrago-Litvak L., Nevinsky G.A. 1999. High affinity interaction of HIV-1 integrase with specific and non-specific single-stranded short oligonucleotides. FEBS Lett. 455, 154–158.

    PubMed  Google Scholar 

  67. Bugreev D.V., Baranova S., Zakharova O.D., Parissi V., Desjobert C., Sottofattori E., Balbi A., Litvak S., Tar-rago-Litvak L., Nevinsky G.A. 2003. Dynamic, thermo-dynamic, and kinetic basis for recognition and transfor-mation of DNA by human immunodeficiency virus type 1 integrase. Biochemistry. 42, 9235–9247.

    PubMed  Google Scholar 

  68. Doronin S.V., Lavrik O.I., Nevinsky G.A., Podust V.N. 1987. The efficiency of dNTP complex formation with human placenta DNA polymerase alpha as demon-strated by affinity modification. FEBS Lett. 216, 22--224.

    Google Scholar 

  69. Sugahara M., Mikawa T., Kumasaka T., Yamamoto M., Kato R., Fukuyama K., Inoue Y., Kuramitsu S. 2000. Crystal structure of a repair enzyme of oxidatively dam-aged DNA, MutM (Fpg), from an extreme thermophile, Thermus thermophilusHB8. EMBOJ. 19, 3857–3869.

    Google Scholar 

  70. Gilboa R., Zharkov D.O., Golan G., Fernandes A.S., Gerchman S.E., Matz E., Kycia J.H., Grollman A.P., Shoham G. 2002. Structure of formamidopyrimidine-DNA glycosylase covalently complexed to DNA. J. Biol. Chem. 277, 19811–19816.

    PubMed  Google Scholar 

  71. Serre L., Pereira de Jesus K., Boiteux S., Zelwer C., Castaing B. 2002. Crystal structure of the Lactococcus lactis formamidopyrimidine-DNA glycosylase bound to an abasic site analogue-containing DNA. EMBOJ. 21, 2854–2865.

    Google Scholar 

  72. Fromme J.C., Verdine G.L. 2002. Structural insights into lesion recognition and repair by the bacterial 8-oxoguanine DNA glycosylase MutM. Nature. Struct. Biol. 9, 544–552.

    PubMed  Google Scholar 

  73. Stewart L., Redinbo M.R., Qiu X., Hol W.G., Cham-poux J.J. 1998. A model for the mechanism of human topoisomerase I. Science. 279, 1534–1541.

    PubMed  Google Scholar 

  74. Redinbo M.R., Stewart L., Kuhn P., Champoux J.J., Hol W.G. 1998. Crystal structures of human topoi-somerase I in covalent and noncovalent complexes with DNA. Science. 279, 1504–1513.

    PubMed  Google Scholar 

  75. Saenger W. 1984. Principles of Nucleic Acid Structure. Springer-Verlag, New York.

    Google Scholar 

  76. Berg O.G., Winter R.B., von Hippel P.H. 1981. Diffu-sion-driven mrchanism of protein translocation: 1. Models and theory. Biochemistry. 20, 6928–6948.

    Google Scholar 

  77. Winter R.B., von Hippel P.H. 1981. Diffusion-driven mrchanism of protein translocation: 2. The E. coli repressor-operator interaction: Equilibrium measurements. Biochemistry. 20, 6948–6960.

    PubMed  Google Scholar 

  78. Higley M., Lloyd R.S. 1993. Processivity of uracil DNA glycosylase. Mutat. Res. 294, 109–116.

    PubMed  Google Scholar 

  79. Bennett S.E., Sanderson R.J., Mosbaugh D.W. 1995. Processivity of E. coliand rat liver mitochondrial uracil-DNA glycosylase is affected by NaCl concentra-tion. Biochemistry. 34, 6109–6119.

    PubMed  Google Scholar 

  80. Carey D.C., Strauss P.R. 1999. Human apurinic/apyrim-idinic endonuclease is processive. Biochemistry. 38, 16553–16560.

    PubMed  Google Scholar 

  81. Francis A.W., David S.S. 2003. Escherichia coliMutY and Fpg utilize a processive mechanism for target loca-tion. Biochemistry. 42, 801–810.

    PubMed  Google Scholar 

  82. Ganesan A.K., Seawell P.C., Lewis R.J., Hanawalt P.C. 1986. Processivity of T4 endonuclease V is sensitive to NaCl concentration. Biochemistry. 25, 5751–5755.

    PubMed  Google Scholar 

  83. Gruskin E.A. Lloyd R.S. 1986. The DNA scanning mechanism of T4 endonuclease V. Effect of NaCl con-centration on processive nicking activity. J. Biol. Chem. 261, 9607–9613.

    PubMed  Google Scholar 

  84. Lloyd R.S., Hanawalt P.C., Dodson M.L., 1980. Proces-sive action of T4 endonuclease V on ultraviolet-irradi-ated DNA. Nucleic Acids Res. 8, 5113–5127.

    PubMed  Google Scholar 

  85. Mol C.D., Izumi T., Mitra S., Tainer J.A. 2000. DNA-bound structures and mutants reveal abasic DNA bind-ing by APE1 repair and coordination. Nature. 40, 45--456.

    Google Scholar 

  86. Kalodimos C.G., Bonvin A.M., Salinas R.K., Wechsel-berger R., Boelens R., Kaptein R. 2002. Plasticity in protein-DNA recognition: lac repressor interacts with its natural operator 01 through alternative conforma-tions of its DNA-binding domain. EMBOJ. 21, 286--2876.

    Google Scholar 

  87. Baranovsky A.G., Buneva V.N., Nevinsky G.A. Human deoxyribonucleases. Biokhimiya. 69, 725–742.

  88. Suck D. 1994. DNA recognition by DNase I. J. Mol. Recognit. 7, 65–70.

    PubMed  Google Scholar 

  89. Bernardi A., Gaillard C., Bernardi G. 1975. The speci-ficity of five DNAases as studied by the analysis of 5'-terminal doublets. Eur. J. Biochem. 52, 451–457.

    PubMed  Google Scholar 

  90. Mehdi S., Gerlt J.A. 1984. Syntheses and configura-tional analyses of thymidine 4-nitrophenyl [17O,18O]phosphates and the stereochemical course of.662 MOLECULAR BIOLOGY Vol. 38 No. 5 2004 NEVINSKY a reaction catalyzed by bovine pancreatic deoxyribonu-clease I. Biochemistry. 23, 4844–4852.

    PubMed  Google Scholar 

  91. Weston S.A., Lahm A., Suck D. 1992. X-ray structure of the DNase I-d(GGTATACC)2 complex at 2.3 Å res-olution. J. Mol. Biol. 226, 1237–1256.

    PubMed  Google Scholar 

  92. Lahm A., Suck D. 1991. DNase I-induced DNA confor-mation. 2 Å structure of a DNase I-octamer complex. J. Mol. Biol. 222, 645–667.

    PubMed  Google Scholar 

  93. Weston S., Suck D. 1993. X-ray structures of two sin-gle-residue mutants of DNase I: H134Q and Y76A. Protein Eng. 6, 349–357.

    PubMed  Google Scholar 

  94. Warren M.A., Evans S.J., Connolly B.A. 1997. Effects of non-conservative changes to tyrosine 76, a key DNA binding residue of DNase I, on phosphodiester bond cleavage and DNA hydrolysis selectivity. Protein Eng. 10, 279–283

    PubMed  Google Scholar 

  95. Doherty A.J., Worrall A.F., Connolly B.A. 1995. The roles of arginine 41 and tyrosine 76 in the coupling of DNA recognition to phosphodiester bond cleavage by DNase I: A study using site-directed mutagenesis. J. Mol. Biol. 251, 366–377.

    PubMed  Google Scholar 

  96. Lokhova I.A., Nevinsky G.A., Gorn V.V., Veniaminova A.G., Repkova M.V., Kavsan V.M., Rudenko N.K., Lavrik O.I. 1990. A comparison of the initiating abilities of ribo-and deoxyriboprimers in DNA polymerization catalyzed by AMV reverse tran-scriptase. FEBS Lett. 274, 156–158.

    PubMed  Google Scholar 

  97. Pelletier H., Sawaya M.R., Kumar A., Wilson S.H., Kraut J. 1994. Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science. 264, 1891–1903.

    PubMed  Google Scholar 

  98. Jacobo-Molina A., Ding J., Nanni R.G., Clark A.D., Lu X., Hizi A., Hudhes S.H., Arnold E. 1993. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 Å resolution shows bent DNA. Proc. Natl. Acad. Sci. USA. 90, 6320–6324.

    PubMed  Google Scholar 

  99. Patel P.H., Jacobo-Molina A., Ding J., Tantillo Ch., Clark A.D., Raag R., Nanni G., Hudhes S.H., Arnold E. 1995. Insights into DNA polymerization mechanisms from structure and function analysis of HIV-1 reverse transcriptase. Biochemistry. 34, 5351–5363.

    PubMed  Google Scholar 

  100. Oschepkov D.Yu., Bugreev D.V., Vityaev E.E., Nev-insky G.A. 2002. Study of the context-dependent con-formational and physicochemical properties of DNA topoisomerase I cleavage sites. Proc. Third Int. Conf. BGRS, Novosibirsk, Russia. 1, 161–164.

    Google Scholar 

  101. Oshchepkov D.Yu., Turnaev I.I., Vityaev E.E. 2002. Study of the context-dependent conformational and physicochemical properties of DNA functional sites. Proc. Third Int. Conf. BGRS, Novosibirsk, Russia. 1, 43–46.

    Google Scholar 

  102. Viswamitra M.A., Seshadri T.P. 1975. An uncommon nucleotide conformation shown by molecular structure of deoxyuridine-5'-phosphate and nucleic acid stere-ochemistry. Nature. 258, 542–544.

    PubMed  Google Scholar 

  103. Mol C.D., Hosfield D.J., Tainer J.A. 2000 Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair: The 3' ends. Mutat. Res. 460, 211–229.

    PubMed  Google Scholar 

  104. 1A36.pdb (Human DNA topoisomerase I (70 kDa) In non-covalent complex with a 22 base pair DNA duplex). RCSB Protein Data Bank (http://www.rcsb.org/pdb/). 29 Jan. 1998.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevinsky, G.A. The Role of Weak Specific and Nonspecific Interactions in Enzymatic Recognition and Conversion of Long DNAs. Molecular Biology 38, 636–662 (2004). https://doi.org/10.1023/B:MBIL.0000043935.99590.ba

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MBIL.0000043935.99590.ba

Navigation