Skip to main content
Log in

Virtual generation of agents against Mycobacterium tuberculosis. A QSAR study

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A QSAR approach based on the use of various topological indices as new theoretical molecular descriptors was applied to the study of a set of 64 anti-tuberculosis agents involving the substituted benzoxazines and phenylquinazolines. In order to evaluate the reliability of the proposed linear QSAR model, several statistical tests were proposed. The resulting model was subsequently applied to a wider virtual molecular library, which, together with the original set of 64 molecules with known activities contained another 512 molecules for which the predictions were made. Based on this prediction some new structures were proposed as especially promising candidates for active anti-tuberculotic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kochi, A., The global tuberculosis situation and the new control strategy of the World Health Organization, Tubercle, 72 (1991) 1.

    Article  CAS  Google Scholar 

  2. Cohn, D. L., Bustreo, F. and Raviglione, M. C. Drug resistant tuberculosis: Review of the world-wide situation and the WHO/IUATLD Global Surveillance Project. International Union Against Tuberculosis and Lung Disease, Clin. Infect. Dis., 24 (Suppl 1) (1997) S121.

    Google Scholar 

  3. Veen, J., Drug resistant tuberculosis: Back to sanatoria, surgery and cod liver oil?, Eur. Respir. J., 8 (1995) 1073.

    Article  CAS  Google Scholar 

  4. Gestal-Otero, J. J., Figueiras-Guzmán, A. and Montes-Martínez, A., Enfermedades infecciosas emergentes. Med. Clin. (Barcelona), 109 (1997) 553–561.

    CAS  Google Scholar 

  5. Iseman, M. D. and Sbarbaro, J. A., The increasing prevalence of resistance to antituberculosis chemotherapeutic agents: Implications for global tuberculosis control, Curr. Clin. Top. Infect. Dis., 12 (1992) 188–204.

    CAS  Google Scholar 

  6. Waisser, K., Macháček, M., Dostál, H., Gregor, J., Kubicová, L., Klimešová, V., Kuneš, K., Palát, K., Hladůvkova, J., Kaustová, J. and Möllmann, U., Relationships between the chemical structure of substances and their antimycobacterial activity against atypical strains. Part 18. 3-Phenyl-2H-1,3-benzoxazine-2,4 (3H)-diones and isosteric 3-phenylquinazoline-2,4(1H, 3H)-diones, Collect. Czech. Chem. Commun., 64 (1999) 1902–1924.

    Article  CAS  Google Scholar 

  7. Waisser, K., Hladůvková, J., Gregor, J., Rada, T., Kubicová, L., Klimešová, V. and Kaustová, J., Relationships between the chemical structure of antimycobacterial substances and their activity against atypical strains. Part 14: 3-Aryl-6,8-dihalogeno-2H-1,3-benzoxazine-2,4(3H)-diones, Arch. Pharm. Pharm. Med. Chem., 331(1) (1998) 3–6.

    Article  CAS  Google Scholar 

  8. Waisser, K., Gregor, J., Dostál, H., Kuneš, K., Kubicová, L., Klimešová, V. and Kaustová, J., Influence of the replacement of the oxo function with the thioxo group on the antimycobacterial activity of 3-aryl-6,8-dichloro-2H-1,3-benzoxazine-2,4(3H)-diones and 3-arylquinazoline-2,4(1H,3H)-diones, Il Farmaco, 56(10) (2001) 803–807.

    Article  CAS  Google Scholar 

  9. Waisser, K., Gregor, J., Kubicová, L., Klimešová, V., Kuneš, J., Machácek, M. and Kaustová, J., New groups of antimycobacterial agents: 6-chloro-3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 6-chloro-3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones, Eur. J. Med. Chem., 35(7–8) (2000) 733–741.

    Article  CAS  Google Scholar 

  10. BesalÚ, E., Combinator v1.3. Institute of Computational Chemistry, University of Girona, Spain, 2003.

    Google Scholar 

  11. Lobanov, V., MOPAC v6.00, University of Florida, 1996.

  12. BesalÚ, E., TQSI program v1.0. Institute of Computational Chemistry, University of Girona, Spain, 2003.

    Google Scholar 

  13. A. T. Balaban, J. Chem. Inf. Comput. Sci., 35 (1995) 339–350.

    Article  CAS  Google Scholar 

  14. Mihalic, Z. and Trinajstic, N., A graph-theoretical approach to structure-property relationships (SYM), J. Chem. Educ., 69 (1992) 701–712.

    Article  CAS  Google Scholar 

  15. Kier, L. B. and Hall, L. H., Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.

    Google Scholar 

  16. Gálvez, J., Garcia, R., Salabert, M. T. and Soler, R., Charge indices. New topological descriptors, J. Chem. Inf. Comput. Sci. 34(3) (1994) 520–525.

    Article  Google Scholar 

  17. Carbó-Dorca, R., Amat, L., BesalÚ, E., Lobato, M., 'Quantum Molecular Similarity', in R. Carbó-Dorca and P. G. Mezey (eds), Advances in Molecular Similarity, Vol. 2, JAI Press, London, 1998, pp. 1–42.

    Google Scholar 

  18. BesalÚ, E., Gironés, X., Amat, L. and Carbó-Dorca, R., Molecular quantum similarity and the fundaments of QSAR, Acc. of Chem. Res., 35 (2002) 289–295.

    Article  CAS  Google Scholar 

  19. Whitley, D. C., Ford, M. G. and Livingstone, D., Unsupervised forward selection: A method for eliminating redundant variables, J. Chem. Inf. Comput. Sci., 40(5) (2000) 1160–1168.

    Article  CAS  Google Scholar 

  20. Stone, M., Cross-validatory choice and assessment of statistical predictions, J. of the Roy. Stat. Soc. B, 36 (1974) 111–147.

    Google Scholar 

  21. Wold, S., Validation of QSAR's, Quant. Struct.-Act. Relat. 10 (1991) 191–193.

    CAS  Google Scholar 

  22. Wold, S. and Eriksson, L., 'Statistical Validation of QSAR Results. Validation Tools', in H. van de Waterbeemd (ed.), Chemometric Methods in Molecular Design, VCH, Weinheim, 1995, pp. 309–318.

    Google Scholar 

  23. BesalÚ, E., Fast computation of cross-validated properties in full linear leave-many-out procedures, J. Math. Chem., 29(3) (2001) 191–204.

    Article  Google Scholar 

  24. BesalÚ, E., Regre v1.5. Institute of Computational Chemistry, University of Girona, Spain, 2003.

    Google Scholar 

  25. Pecka, J. and Ponec, R., Simple analytical method for evaluation of statistical importance of correlations in QSAR studies, J. Math. Chem., 27 (2000) 13–22.

    Article  CAS  Google Scholar 

  26. Waller, C. L. and Bradley, M. P., Development and validation of a novel variable selection technique with application to multidimensional quantitative structure-activity studies, J. Chem. Inf. Comput. Sci., 39 (1999) 345–355.

    Article  CAS  Google Scholar 

  27. Topliss, J. G. and Edwards, R. P., Chance factors in studies of quantitative structure-activity relationships, J. Med. Chem., 22(10) (1979) 1238–1244.

    Article  CAS  Google Scholar 

  28. BesalÚ, E. and Vera, L., 'Internal Test Sets (ITS) Method: A New Cross-validation Technique to Assess the Predictive Capability of QSAR Models', in K. Sen (ed.), Proceedings of the V Girona Seminar on Molecular Similarity, Girona (Spain), 12–20 July 2001, Nova Science Publishers, Inc., New York, 2003.

    Google Scholar 

  29. Hawkins, D. M., Basak, S. C. and Mills, D., Assessing model fit by cross-validation, J. Chem. Inf. Comput. Sci., 43(2) (2003) 579–586.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emili Besalú.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besalú, E., Ponec, R. & Vicente de Julián-Ortiz, J. Virtual generation of agents against Mycobacterium tuberculosis. A QSAR study. Mol Divers 6, 107–120 (2003). https://doi.org/10.1023/B:MODI.0000006839.52374.d7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MODI.0000006839.52374.d7

Navigation