Skip to main content
Log in

Prosystemin-antimicrobial-peptide fusion reduces tomato late blight lesion expansion

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Antimicrobial peptides offer a new method for controlling pathogens, however, many promising peptides are too small for direct production in plants. A protein delivery system was developed based on a proteolytic mechanism used by Solanaceous plants to produce the very small (18 amino acid) signaling peptide systemin from the polypeptide prosystemin. Fusion of the gene encoding the 23 kDa protein prosystemin with the antimicrobial peptide (pep11) sequence, replacing the systemin sequence, allowed for expression in transgenic tomato plants. Six days after inoculation with the late blight pathogen Phytophthora infestans, detached leaflets of transgenic tomato (Rutgers) exhibited a reduction in lesion size of at least 50 percent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Caten C.E. and Jinks J.L. 1968. Spontaneous variability of single isolates of Phytophthora infestans. I Cultural variation. Canad. J. Bot. 46: 329–348.

    Google Scholar 

  • Cavallarin L., Andreu D. and San Segundo B. 1998. Cercropin Aderived peptides are potent inhibitors of fungal plant pathogens. Molec. Plant Microbe Inter. 11: 218–227.

    Google Scholar 

  • Constabel C.P., Yip L. and Ryan C.A. 1998. Prosystemin from potato, black nightshade, and bell pepper: primary structure and biological activity of predicted systemin polypeptides. Plant Mol. Biol. 36: 55–62.

    Article  PubMed  Google Scholar 

  • Del Sal G., Storici P., Schneider C., Romeo D. and Zanetti M. 1992. cDNA cloning of the neutrophil bactericidal peptide indolicidin. Biochem. Biophys. Res. Commun. 187: 467–472.

    PubMed  Google Scholar 

  • Dombrowski J.E., Pearce G. and Ryan C.A. 1999. Proteinase inhibitor-inducing activity of the prohormone prosystemin resides exclusively in the C-terminal systemin domain. Proc. Natl. Acad. Sci. USA 96: 12947–12952.

    Article  PubMed  Google Scholar 

  • Duvick J.P., Rood T., Rao A.G. and Marshak D.R. 1992. Purification and characterization of a novel antimicrobial peptide from maize (Zea maysL.) kernels. J. Biol. Chem. 267: 18814–18823.

    PubMed  Google Scholar 

  • Francois I.E.J.A., DeBolle M.F.C., Dwyer G., Goderis I.J.W.M., Woutors P.F.J., Verhaert P.D., Proost P., Schaaper W.M.M., Cammue B.P.A. and BroekaertW.F. 2002. Transgenic expression in Arabidopsisof a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiol. 128: 1346–1358.

    Article  PubMed  Google Scholar 

  • Fry W.E. and Goodwin S.B. 1997. Re-emergence of potato and tomato late blight in the United States. Plant Disease 81: 1349–1357.

    Google Scholar 

  • Gao A-G, Hakimi S.M., Mittanck C.A., Wu Y., Woerner B.M., Stark D.M., Shah D.M., Liang J. and Rommens C.M.T. 2000. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat. Biotechnol. 18: 1307–1310.

    Article  PubMed  Google Scholar 

  • Hancock R.E.W. and Leher R. 1998. Cationic peptides: a new source of antibiotics. TIBTECH 16: 82–88.

    Google Scholar 

  • Jones R.W. 2000. Analysis of prosystemin in potato. (Abstr.) Am. J. Potato Res. 77: 404.

    Google Scholar 

  • Kazan K., Rusu A., Marcus J.P., Goulter K.C. and J.M. Manners. 2002. Enhanced quantitative resistance to Leptosphaeria maculansconferred by expression of a novel antimicrobial peptide in canola (Brassica napusL.). Mol. Breeding 10: 63–70.

    Article  Google Scholar 

  • Marcus J.P., Green J.L., Goulter K.C. and Manners J.M. 1999. A family of antimicrobial peptides is produced by processing of a 7S globulin protein in Macadamia integrifoliakernels. Plant J. 19: 699–710.

    Article  PubMed  Google Scholar 

  • McCormick S., Niedermeyer J., Fry J., Barnason A., Horsch R., and Fraley R., 1986. Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5: 81–84.

    Article  Google Scholar 

  • Nizet V., Ohtake T., Lauth X., Trowbridge J., Rudisill J., Dorschner R.A., Pestonjamasp V., Piraino J., Huttner K. and Gallo R.L. 2001. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414: 454–457.

    Article  PubMed  Google Scholar 

  • Okamoto M., Mitsuhara I., Ohshima M., Natori S. and Ohashi Y. 1998. Enhanced expression of an antimicrobial peptide sarcotoxin IA by GUS fusion in transgenic tobacco plants. Plant Cell Physiol. 39: 57–63.

    PubMed  Google Scholar 

  • Osusky M., Zhou G., Osuska L., Hancock R.E., Kay W.W. and Misra S. 2000. Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nature Biotechnol. 18: 1162–1166.

    Article  Google Scholar 

  • Owens L.D. and Heutte T.M. 1997. A single amino acid substitution in the antimicrobial defense protein cercropin B is associated with diminished degradation by leaf intercellular fluid. Molec. Plant Microbe Inter. 10: 525–528.

    Google Scholar 

  • Park I.Y., Park C.B, Kim M.S. and Kim S.C. 1998. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Letters 437: 258–262.

    Article  PubMed  Google Scholar 

  • Putsep K., Normark S. and Boman H.G. 1999. The origin of cercropins; implications from synthetic peptides derived from ribosomal protein L1. FEBS Letters 451: 249–252.

    Article  PubMed  Google Scholar 

  • Schaller A. and Ryan C.A. 1995. Systemin-a polypeptide defense signal in plants. BioEssays 18: 27–33.

    Google Scholar 

  • Segura A., Moreno M., Madueno F., Molina A. and Garcia-Olmedo F. 1999. Snakin-1, a peptide from potato that is active against plant pathogens. Molec. Plant Microbe Inter. 12: 16–23.

    Google Scholar 

  • Tailor R., Acland D.P., Attenborough S., Cammue B.P.A., Evans I.J., Osborn R.W., Ray J.A., Rees S.B. and BroekaertW.F.. 1997. A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein. J. Biol. Chem. 272: 24480–24487.

    Article  PubMed  Google Scholar 

  • Terras F.R.G., Eggermont K., Kovaleva V., Raikhel N.V., Osborn R.W., Kester A., Rees S.B., Torrekens S., Van Leuven F., Vanderleyden J., Cammue B.P.A. and Broekaert W.F. 1995. Small cysteine-rich antifungal proteins from radish: their role in host defense. The Plant Cell 7: 573–588.

    Article  PubMed  Google Scholar 

  • Van der Biezen E.A. 2001. Quest for antimicrobial genes to engineer disease-resistant crops. Trends in Plant Sci. 6: 89–91.

    Article  Google Scholar 

  • Vetsch M., Janzik I. and Schaller A. 2000. Characterization of prosystemin expressed in the baculovirus/insect cell system reveals biological activity of the systemin precursor. Planta 211: 91–97.

    Article  PubMed  Google Scholar 

  • Yang H., Matsubayashi Y., Hanai H. and Sakagami Y. 2000. Phytosulfokine-alpha, a peptide growth factor found in higher plants: its structure, functions, precursor and receptors. Plant Cell Physiol. 41: 825–830.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, R.W., Ospina-Giraldo, M. & Clemente, T. Prosystemin-antimicrobial-peptide fusion reduces tomato late blight lesion expansion. Molecular Breeding 14, 83–89 (2004). https://doi.org/10.1023/B:MOLB.0000038001.22029.07

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MOLB.0000038001.22029.07

Navigation