Skip to main content
Log in

Molecular relatedness within the “Ascochyta pinodes-complex”

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The morphological, molecular and pathological characters of 34 isolates identified as Ascochyta pinodes, A. phaseolorum, and Phoma medicaginis var. pinodella were determined. Initial molecular findings, based on PCR fragment size and RFLPs of sections of the mitochondrial genome, the rRNA gene cluster and the β-tubulin gene complex, were further investigated by sequencing of the total rRNA ITS regions. Isolates were homogenous for all characteristics determined, with the exception of conidial size and septation, and RFLPs of AT rich (presumptive mitochondrial) DNA. The results suggest that the isolates represent host preferential forms of a single taxon, and this finding is discussed in relation to the known teleomorphs and reference material of the species studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wallen VR. Field evaluation and the importance of the Ascochyta complex on peas. Canadian Journal of Plant Science 1965; 5: 27–33.

    Google Scholar 

  2. Jones LK. Studies of the nature and control of blight, leaf and pod spot, and footrot of peas caused by species of Ascochyta. Bulletin of New York State Agricultural Experimental Station 1927; 547: 46.

    Google Scholar 

  3. Boerema GH, Dorenbosch MMJ, Leffring L. A comparative study of the black stem fungi on lucerne and red clover and the footrot fungus on pea. Netherlands Journal of Plant Pathology 1965; 71: 79–89.

    Google Scholar 

  4. White JF, Morgan-Jones G. Studies in the genus Phoma. VI. Concerning Phoma medicaginis var. pinodella. Mycotaxon 1987; 28: 241–248.

    Google Scholar 

  5. Boerema GH, Pieters R, Hamers MEC. Check-list for scientific names of common parasitic fungi. Supplement Series 2c,d (additions and corrections). Fungi on field crops: pulse (legumes), forage crops (herbage legumes), vegetables and cruciferous crops. Netherlands Journal of Plant Pathology 1993; 99: Supplement 1, 1–32.

    Google Scholar 

  6. Brewer JG, Boerema GH. Electron microscope observations on the development of pycnidiospores in Phoma and Ascochyta spp. Proc. Konink. Neder. Akad. Wetenschappen, Series C 1965; 68: 86–97.

    Google Scholar 

  7. Sutton BC, Sandhu DK. Electron microscopy of conidium development and secession in Cryptosporiopsis sp., Phoma fumosa, Melanconium bicolor, and M. apiocarpum. Canadian Journal of Botany 1969; 47: 745–749.

    Google Scholar 

  8. Boerema GH, Bollen GJ. Conidiogenesis and conidial septation as differentiating criteria between Phoma and Ascochyta. Persoonia 1975; 8: 111–144.

    Google Scholar 

  9. Singh PJ; Pal M, Prakash N. Ultrastructural studies of conidiogenesis of Ascochyta rabiei, the causal organism of chickpea blight. Phytoparasitica 1997; 25: 291–304.

    Google Scholar 

  10. Punithalingam E. Graminicolous Ascochyta species. Mycological Papers 1979; 142: 1–214.

    Google Scholar 

  11. Sutton BC. The Coelomycetes. Kew: CAB International Mycological Institute, 1980.

    Google Scholar 

  12. Buchanan PK. A reappraisal of Ascochytula and Ascochytella (Coelomycetes). Mycological Papers 1987; 156: 1–83.

    Google Scholar 

  13. Punithalingam E, Holliday P. Mycosphaerella pinodes. Descriptions of Pathogenic Fungi and Bacteria No. 340. Kew: Commonwealth Mycological Institute, 1972.

    Google Scholar 

  14. Boerema GH, Verhoeven AA. Check-list for scientific names of common parasitic fungi. Supplement series 2c: Fungi on field crops: pulse (legumes), forage crops (herbage legumes). The Netherlands Journal of Plant Pathology 1979; 85: 151–185.

    Google Scholar 

  15. Sutton BC, Waterston JM. Ascochyta phaseolorum. Descriptions of Pathogenic Fungi and Bacteria No. 81. Kew: Commonwealth Mycological Institute, 1966.

    Google Scholar 

  16. Melnik VA. Opredelitel' Gribov Roda Ascochyta Lib. [Key to Fungi of the Genus Ascochyta Lib.]. Leningrad, USSR, 1977.

    Google Scholar 

  17. Fatehi J. Morphological and molecular characterization of Ascochyta and Phoma species pathogenic to legumes. PhD. Thesis, Dept of Agriculture, University of Reading, 2000.

  18. Crossan DF. The relationships of seven species of Ascochyta occurring in North Carolina. Phytopathology 1958; 48: 248–255.

    Google Scholar 

  19. Alcorn JL. Occurrence and host range of Ascochyta phaseolorum in Queensland. Australian Journal of Biological Sciences 1968; 21: 1143–1151.

    Google Scholar 

  20. Boerema GH. Ascochyta phaseolorum is synonymous with Phoma exigua. The Netherlands Journal of Plant Pathology 1972; 78: 113–115.

    Google Scholar 

  21. Madhosingh G, Wallen VR. Serological differentiation of the Ascochyta species on peas. Canadian Journal of Microbiology 1968; 14: 449–451.

    Google Scholar 

  22. Faris-Mokaiesh S, Boccara M, Denis J-B, Derrien A, Spire D. Differentiation of the “Ascochyta complex” fungi of pea by biochemical and molecular markers. Current Genetics 1996; 29: 182–190.

    Google Scholar 

  23. Bowen JK, Lewis BG, Matthews P. Discovery of the teleomorph of Phoma medicaginis var. pinodella in culture. Mycological Research 1997; 101: 80–84.

    Google Scholar 

  24. Smith D, Onions AHS. The Preservation and Maintenance of Living Fungi. Kew: Commonwealth Mycological Institute, 1983.

    Google Scholar 

  25. Mugnai L, Bridge PD, Evans HC. A chemotaxonomic evaluation of the genus Beauveria. Mycological Research 1989; 92: 199–209.

    Google Scholar 

  26. Cenis JL. Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Research 1992; 20: 2380.

    Google Scholar 

  27. Raeder U, Broda P. Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology 1985; 1: 17–20.

    Google Scholar 

  28. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Molecular Ecology 1993; 2: 113–118.

    Google Scholar 

  29. White TJ, Bruns TD, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelgard DH, Sninsky JJ, White TJ. eds. PCR Protocols: A Guide to Methods and Application. New York: Academic Press, 1990: 315–322.

    Google Scholar 

  30. Crespo A, Bridge PD, Cubero OF, Hawksworth DL. Determination of genotypic variability in the lichen-forming fungus Parmelia sulcata. In Turk R, Zorer R. eds. Progress and Problems in Lichenology in the Nineties. Bibliotheca Lichenologica, 1997: Band 68, 73–79.

  31. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 1995; 61: 1323–1330.

    Google Scholar 

  32. Li K-N, Rouse DI, German TL. PCR primers that allow intergeneric differentiation of Ascomycetes and their application to Verticillium spp. Applied and Environmental Microbiology 1994; 60: 4324–4331.

    Google Scholar 

  33. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  34. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Science (USA) 1977; 7: 5463–5467.

    Google Scholar 

  35. Miller RNG, Holderness M, Bridge PD, Chung GF. Genetic diversity of Ganoderma in oil palm plantings. Plant Pathology 1999; 48: 595–603.

    Google Scholar 

  36. Sagar V, Bhardway CL. Identity of 'mega' form of Phoma medicaginis var. pinodella on pea from Bajaura, Himachal Pradesh. Journal of Mycology and Plant Pathology 1997; 27: 195–198.

    Google Scholar 

  37. Sreenivasaprasad S, Brown AE, Mills PR. DNA sequence variation and interrelationships among Colletotrichum species causing strawberry anthracnose. Physiological and Molecular Plant Pathology 1992; 41: 265–281.

    Google Scholar 

  38. Sreenivasaprasad S, Mills PR, Meehan BM, Brown AE. Phylogeny and systematics of 18 Colletotrichum species based on ribosomal DNA spacer sequences. Genome 1996; 39: 499–512.

    Google Scholar 

  39. Saccardo PA. Fungi Veneti nova vel critici vel Mycologiae Venetae addendi, serie VII. Michelia 1878; 1: 133–121.

    Google Scholar 

  40. Petrak F. Mykologische Notizen. VII. Annales Mycologici 1924; 22: 1–182.

    Google Scholar 

  41. Tomilin BA. Opredelitel' gribov roda Mycosphaerella Johans. Leningrad: Nanka, 1979.

    Google Scholar 

  42. Corlett M. An annotated list of the published names in Mycosphaerella and Sphaerella. J. Cramer: Berlin, 1991 (Mycologia Memoir No. 18).

  43. Punithalingam E, Gibson IAS. Phoma medicaginis var. pinodella. Descriptions of Pathogenic Fungi and Bacteria No. 518. Kew: Commonwealth Mycological Institute, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatehi, J., Bridge, P. & Punithalingam, E. Molecular relatedness within the “Ascochyta pinodes-complex”. Mycopathologia 156, 317–327 (2003). https://doi.org/10.1023/B:MYCO.0000003573.37109.89

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MYCO.0000003573.37109.89

Navigation