Skip to main content
Log in

Growth Rates of Alumina Scales on Fe–Cr–Al Alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The growth rates of alumina scales formed on high-temperature alloys often show a strong deviation from classical parabolic kinetics, and frequently scale growth rates near to a cubic time dependence are observed. This is e.g. the case for most RE doped Fe–Cr–Al-alloys oxidized at temperatures in the range of 1000 to 1300°C. For a number of components made of Fe–Cr–Al alloys, which e.g. prevail in car catalyst carriers, gas burners or hot-gas filters, the detailed knowledge of the rate law governing scaling kinetics is an absolutely necessary requirement for a reliable prediction of the component lifetime and/or the materials application limits. It seems that for ideally gas-tight α-Al2O3 scales a near-cubic time dependence is more a rule than an exception, although the frequently used methods for evaluating measured oxidation data might lead to the erroneous conclusion that the scale growth is governed by a transient-oxidation stage followed by parabolic oxidation. Deviations from an ideal, near-cubic time dependence of the oxidation kinetics of the Fe–Cr–Al alloys are caused by scale cracking during thermal cycling and/or local inhomogenities in the alloy and/or the scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. P. Whittle, and J. Stringer, Philosophical Transactions of the Royal Society in London A295, 309-329 (1980).

    Google Scholar 

  2. D. Sporer, and O. Lang, Proc. 3rd Int. Charles Parsons Turbine Conf. (25–27 Apr. 1995, Newcastle upon Tyne, UK, 1995), 631-641.

  3. W. J. Quadakkers, and M. J. Bennett, Materials Science and Technology 10, 126-131 (1994).

    Google Scholar 

  4. J. R. Nicholls, R. Newton, N. J. Simms, and J. F. Norton, Mat. at High Temp. 20 (2), 93-108 (2003).

    Google Scholar 

  5. F. H. Stott, and N. Hiramatsu, Materials at High Temperatures 17 (1), 93-99 (2000).

    Google Scholar 

  6. W. J. Quadakkers, and K. Bongartz, Werkstoffe und Korrosion 45, 232-241 (1994).

    Google Scholar 

  7. I. Gurappa, S. Weinbruch, D. Naumenko, and W. J. Quadakkers, Materials and Corrosion 51, 224-235 (2000).

    Google Scholar 

  8. W. J. Quadakkers, Werkstoffe und Korrosion 41, 659-668 (1990).

    Google Scholar 

  9. Z. Liu, W. Gao, and Y. He, Oxidation of Metals 53 (3/4), 341-350 (2000).

    Google Scholar 

  10. H. M. Hindam, and W. W. Smeltzer, J. Electrochem. Soc. 127, 1630-1635 (1980).

    Google Scholar 

  11. J. Philibert, and A. M. Huntz, Proc. 2nd Int. Conf. Microscopy of Oxidation (29–31 Mar. 1993, Cambridge, UK), S. B. Newcomb, and M. J. Bennett, eds. (The Institute of Materials, London, 1993), pp. 288–297.

    Google Scholar 

  12. K. Bongartz, W. J. Quadakkers, J. P. Pfeifer, and J. S. Becker, Surface Science 292, 196-208 (1993).

    Google Scholar 

  13. N. N. Khoi, W. W. Smeltzer, and J. D. Embury, J. Electrochem. Soc. 122, 1495-1503 (1975).

    Google Scholar 

  14. A. Atkinson, R. I. Taylor, and A. E. Hughes, Philosophical Magazine A 45 (5), 823-833 (1982).

    Google Scholar 

  15. G. Borchardt, and G. Strehl, Proc. of Int. Conf. on Metal Supported Automotive Catalytic Converters (MACC-2001, 3–4 Oct. 2001, Münich, Germany, ISBN 3-527-30491-6, 2002), 106-116.

  16. B. Pieraggi, Oxidation of Metals 27 (3/4), 111-185 (1987).

    Google Scholar 

  17. J. P. Pfeifer, H. Holzbrecher, W. J. Quadakkers, and W. Speier, Fresenius Journal for Analytical Chemistry 346, 186-191 (1993).

    Google Scholar 

  18. J. Mayer, H. J. Penkalla, A. Dymiati, M. Dani, P. Untoro, D. Naumenko, and W. J. Quadakkers, Materials at High Temperatures 20 (3), 413-419 (2003).

    Google Scholar 

  19. B. A. Pint, J. R. Martin, and L. W. Hobs, Solid State Ionics 78, 99-107 (1995).

    Google Scholar 

  20. G. Thurn, F. Aldinger, and G. A. Schneider, Materials Science and Engineering A 233 (1–2), 176-182 (1997).

    Google Scholar 

  21. H. Bode, Proc. Int. Conf. On Metal Supported Automotive Catalytic Converters, 27–28 Oct. 1997, Wuppertal, Germany, H. Bode, ed. (Werkstoff-Informationsgesselschaft mbH, Frankfurt, Germany, ISBN 3-88355-254-2, 1997), 17-32.

    Google Scholar 

  22. W. J. Quadakkers, J. Nicholls, D. Naumenko, J. Wilber, and L. Singheiser, Proc. of Int. Conf. on Metal Supported Automotive Catalytic Converters, H. Bode, ed. (MACC-2001, 3–4 Oct. 2001, Münich, Germany, ISBN 3-527-30491-6, 2002), 93-105.

  23. M. Bennett, and M. R. Houlton, High Temperature Materials for Power Engineering, E. Bachelet, (Kluwer Academic Publishers, 1990), 227-238.

  24. D. Naumenko, J. Le-Coze, E. Wessel, W. Fischer, and W. J. Quadakkers, Materials Transactions 43 (2), 168-172 (2002).

    Google Scholar 

  25. W. J. Quadakkers, D. Naumenko, L. Singheiser, H. J. Penkalla, A. K. Tyagi, and A. Czyrska-Filemonowicz, Materials and Corrosion 51, 350-357 (2000).

    Google Scholar 

  26. H. E. Evans, International Materials Reviews 40 (1), 1-40 (1995).

    Google Scholar 

  27. S. Taniguchi, and T. Shibata, Proc. Int. Conf. on Metal Supported Automotive Catalytic Converters, 27–28 Oct. 1997, Wuppertal, Germany, H. Bode, ed. (Werkstoff-Informationsgesselschaft mbH, Frankfurt, Germany, ISBN 3-88355-254-2, 1997), 179-189.

    Google Scholar 

  28. D. Naumenko, W. J. Quadakkers, A. Galerie, Y. Wouters, and S. Jourdain, 20 (3), 287-293 (2003).

  29. R. Anton, and W. J. Quadakkers, Report Forschungszentrum Jülich, Jülich, FRG, Jül-4056, May (2003), ISSN 0944-2952.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Quadakkers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quadakkers, W.J., Naumenko, D., Wessel, E. et al. Growth Rates of Alumina Scales on Fe–Cr–Al Alloys. Oxidation of Metals 61, 17–37 (2004). https://doi.org/10.1023/B:OXID.0000016274.78642.ae

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:OXID.0000016274.78642.ae

Navigation