Skip to main content
Log in

Transcriptome analysis of O3-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

To analyze cellular responses to ozone (O3), we performed a large-scale analysis of the Arabidopsis transcriptome after plants were exposed to O3 for 12 h. By using cDNA macroarray technology, we identified 205 non-redundant expressed sequence tags (ESTs) that were regulated by O3. Of these, 157 were induced and 48 were suppressed by O3. A substantial proportion of these ESTs had predicted functions in cell rescue/defense processes. Using these isolated ESTs, we also undertook a comprehensive investigation of how three hormones, ethylene (ET), jasmonic acid (JA), and salicylic acid (SA), interact to regulate O3-induced genes in various genetic backgrounds of Arabidopsis, such as the ET-insensitive ein2-1, JA-resistant jar1-1, and SA-insensitive npr1-1. The expression of half of the 157 induced genes, especially cell rescue/defense genes, was controlled by ET and JA signaling, indicating that O3-induced defense gene expression at this stage was mainly regulated by ET and JA. Clustering analysis of the 157 O3-induced gene expressions revealed that multiple signal pathways act mutually antagonistically to induce the expression of these genes, and many cell rescue/defense genes induced by ET and JA signal pathways were suppressed by SA signaling, suggesting that the SA pathway acts as a strong antagonist to gene expression induced by ET and JA signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.

    Article  Google Scholar 

  • Asamizu, E., Nakamura, Y., Sato, S. and Tabata, S. 2000. A largescale analysis of cDNA in Arabidopsis thaliana: generation of 12 028 non-redundant expressed sequence tags from normalized and size-selected cDNA libraries. DNA Res. 30: 175–180.

    Article  Google Scholar 

  • Banzet, N., Richaud, C., Deveaux, Y., Kazmier, M., Gagnon, J. and Triantaphylidès, C. 1998. Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant J. 13: 519–527.

    Article  CAS  PubMed  Google Scholar 

  • Brosche, M., Schuler, M.A., Kalbina, I., Connor, L. and Strid, A. 2002. Gene regulation by low level UV-B radiation: identification by DNA array analysis. Photochem. Photobiol. Sci. 1: 656–664.

    Article  CAS  PubMed  Google Scholar 

  • Burczynski, M.E., Sridhar, G.R., Palackal, N.T. and Pennings, T.M. 2001. The reactive oxygen species-and Michael acceptorinducible human aldo-keto reductase AKRC1 reduces the α, β-unsaturated aldehyde 4-hydroxy-2-nonenal to 1,4-dihydroxy-2-nonene. J. Biol. Chem. 276: 2890–2897.

    Article  CAS  PubMed  Google Scholar 

  • Cao, H., Bowling, S.A., Gordon, A.S. and Dong, X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6: 1583–1592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton, H., Knight, M.R., Knight, H., MacAinsh, M.R. and Hetherington, A.M. 1999. Dissection of ozone-induced calcium signature. Plant J. 17: 575–579.

    Article  CAS  PubMed  Google Scholar 

  • Conklin, P.L. and Last, R.L. 1995. Differential accumulation of antioxidant mRNAs in Arabidopsis thaliana exposed to ozone. Plant Physiol. 109: 203–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dat, J.F., Lopez-Delgado, H., Foyer, C.H. and Scott, I.M. 1998. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedling. Plant Physiol. 116: 1351–1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desikan, R., Mackerness, A.-H. S., Hancock, J.T. and Neill, S.J. 2001. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127: 159–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doares, S.H., Narváez-Vásquez, J., Conconi, A. and Ryan, C.A. 1995. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol. 108: 1741–1746.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durrant, W.E., Rowland, O., Piedras, P., Hammond-Kosack, K.E. and Jones, J.D.G. 2000. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound-response gene expression profiles. Plant Cell 12: 963–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95: 14863–14868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feys, B.J. and Parker, J.E. 2000. Interplay of signaling pathways in plant disease resistance. Trends Genet. 16: 449–455.

    Article  CAS  PubMed  Google Scholar 

  • Glick, R.E., Schlagnhaufer, C.D., Arteca, R.N. and Pell, E.J. 1995. Ozone-induced ethylene emission accelerates the loss of ribulose-1,5-bisphosphatecarboxylase/oxygenase and nuclearencoded mRNAs in senescing potato leaves. Plant Physiol. 109: 891–898.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godon, C., Lagniel, G., Lee, J., Buhler, J-M., Kieffer, S., Perrot, M., Boucherie, H., Toledano, M.B. and Labarre, J. 1998. The H2O2 stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273: 22480–22489.

    Article  CAS  PubMed  Google Scholar 

  • Grant, J.J., Yun, B.-W. and Loake, G.J. 2000. Oxidative burst and cognate redox signaling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant J. 24: 87–95.

    Article  Google Scholar 

  • Gupta, V., Willits, M.G. and Glazebrook, J. 2000. Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signaling by SA. Mol. Plant-Microbe Interact. 13: 503–511.

    Article  CAS  PubMed  Google Scholar 

  • Guzman, P. and Ecker, J.R. 1990. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2: 513–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoigné, J. and Bader, H. 1975. Ozonation of water: role of hydroxyl radicals as oxidizing intermediates. Science 190: 782–784.

    Article  Google Scholar 

  • Hubatsch, I., Ridderström M. and Mannervik, B. 1998. Human glutathione transferase A4-4: an alfa class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem J. 330: 175–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kangasjärvi, J., Talvinen, J., Utriainen, M. and Karjalainen, R. 1994. Plant defense systems induced by ozone. Plant Cell Environ. 17: 783–794.

    Article  Google Scholar 

  • Kanofsky, J.R. and Sima, P. 1991. Singlet oxygen production from the reactions of ozone with biological molecules. J. Biol. Chem. 266: 9039–9042.

    CAS  PubMed  Google Scholar 

  • Kliebenstein, D.J., Monde, R.-A. and Last, S.M. 1998. Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol. 118: 637–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura, M., Yamamoto, Y.Y., Seki, M., Sakurai, T., Sato, M., Abe, T., Yoshida, S., Manabe, K., Shinozaki K. and Matsui M. 2003. Identification of Arabidopsis genes regulated by high light-stress using cDNA microarray. Photochem. Photobiol. 77: 226–233.

    CAS  PubMed  Google Scholar 

  • Krupa, S.V. and Manning, W.J. 1988. Atmospheric ozone: formation and effect on vegetation. Environ. Poll. 50: 101–137.

    Article  CAS  Google Scholar 

  • Kubo, A., Saji, H., Tanaka, K. and Kondo, N. 1995. Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone or sulfur dioxide. Plant Mol. Biol. 29: 479–489.

    Article  CAS  PubMed  Google Scholar 

  • Lawton, K., Potter, S.C., Friedrich, L., Vernooij, B., Uknes, S. and Ryals, J. 1994. Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell 6: 581–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R. and Lamb, C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593.

    Article  CAS  PubMed  Google Scholar 

  • Maccarrone, M., Veldink, G.A. and Vliegenthart, J.F.G. 1992. Thermal injury and ozone stress affect soybean lipoxygenase expression. FEBS Lett. 309: 225–230.

    Article  CAS  PubMed  Google Scholar 

  • Mahalingam, R., Gomez-Buitrago, A., Eckardt, N., Shah, N., Guevara-Garcia, A., Day, P., Raina, R. and Fedoroff, N.V. 2003. Characterizing the stress/defense transcriptome of Arabidopsis. Genome Biol. 4: R20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L. and Dietrich, R.A. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genet. 26: 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Mano, J., Torii, Y., Hayashi, S., Takimoto, K., Matsui, K., Nakaura, K., Inzé, D., Babiychuk, E., Kushnir, S. and Asada, K. 2002. The NADPH:quinone oxidoreductase P1-ζ –crystallin in Arabidopsis catalyzes the α, β-hydrogenation of 2-alkenals: detoxification of the lipid peroxide-derived reactive aldehydes. Plant Cell Physiol. 43: 1445–1455.

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama, T., Tamaoki, M., Nakajima, N., Aono, M., Kubo, A., Moriya, S., Ichihara, T., Suzuki, O. and Saji, H. 2002. cDNA microarray assessment for ozone-stressed Arabidopsis thaliana. Environ. Poll. 117: 191–194.

    Article  CAS  Google Scholar 

  • Mehlhorn, H., Tabner, B. and Wellburn A.R. 1990. Electron spin resonance evidence for the formation of free radicals in plants exposed to ozone. Physiol. Plant. 79: 377–383.

    Article  CAS  Google Scholar 

  • Miller, J.D., Arteca, R.N. and Pell, E.J. 1999. Senescenceassociated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiol. 120: 1015–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman, T., De Bruijn, F.J., Green, P., Keegstra, K., Kende, H., Mcintosh, L., Ohlrogge, J., Raikhel, N., Somerville, S., Thomashow, M., Retzel, E. and Somerville, C. 1994. Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol. 106: 1241–1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niki, T., Mitsuhara, I., Seo, S., Ohtsubo, N. and Ohashi, Y. 1998. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol. 39: 500–507.

    Article  CAS  Google Scholar 

  • Overmyer, K., Tuominen, H., Kettunen, R,. Betz, C., Langebartels, C., Sandermann, H. and Kangasjärvi, J. 2000. Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxidedependent cell death. Plant Cell 12: 1849–1862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pell, E.J., Schlagnhaufer, C.D. and Arteca, R.N. 1997. Ozoneinduced oxidative stress: mechanisms of action and reaction. Physiol. Plant. 100: 264–273.

    Article  CAS  Google Scholar 

  • Pieterse, C.J.M. and van Loon, L.C. 1999. Salicylic acidindependent plant defense pathways. Trends Plant Sci. 4: 52–58.

    Article  PubMed  Google Scholar 

  • Rao, M.V. and Davis, K.R. 1999. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J. 17: 603–614.

    Article  CAS  PubMed  Google Scholar 

  • Rao, M.V. and Davis, K.R. 2001. The physiology of ozone induced cell death. Planta 213: 682–690.

    Article  CAS  PubMed  Google Scholar 

  • Rao, M.V., Lee, H-I., Creelman, R.A., Raskin, I., Mullet, J.E. and Davis, K.R. 2000. Jasmonic acid signaling modulates ozoneinduced hypersensitive cell death. Plant Cell 12: 1633–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao, M.V., Lee, H. and Davis, K.R. 2002. Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. Plant J. 32: 447–456.

    Article  CAS  PubMed  Google Scholar 

  • Reymond, P. and Farmer, E.E. 1998. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1: 404–411.

    Article  CAS  PubMed  Google Scholar 

  • Reymond, P., Weber, H., Damond, M. and Farmer, E.E. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12: 707–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossel, J.B., Wilson, I.W. and Pogson, B.J. 2002. Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol. 130: 1109–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandermann, H., Ernst, D., Heller, W. and Langebertles, C. 1998. Ozone: an abiotic elicitor of plant defense reaction. Trends Plant Sci. 3: 47–50.

    Article  Google Scholar 

  • Sasaki, Y., Asamizu, E., Shibata, D., Nakamura, Y., Kaneko, T., Awai, K., Amagai, M., Kuwata, C., Tsugane, T., Masuda, T., Shimada, H., Takamiya, X., Ohta, H. and Tabata, S. 2001. Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res. 8: 153–161.

    Article  CAS  PubMed  Google Scholar 

  • Schaffer, R., Landgraf, J,. Accerbi, M., Simon, V., Larson, M. and Wisman, E. 2001. Microarray analysis of diurnal and circadianregulated genes in Arabidopsis. Plant Cell 13: 113–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S.C. and Manners, J.M. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 97: 11655–11660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31: 279–292.

    Article  CAS  PubMed  Google Scholar 

  • Sellin, S., Holmquist, B., Mannervik, B. and Vallee, B.L. 1991. Oxidation and reduction of 4-hydroxyalkenals atalyzed by isozymes of human alcohol dehydrogenase. Biochemistry 30: 2514–2518.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, Y.K. and Davis, K.R. 1997. The effect of ozone on antioxidant response in plants. Free Radical Biol. Med. 23: 480–488.

    Article  CAS  Google Scholar 

  • Sharma, Y.K., León, J., Raskin, I. and Davis, K.R. 1996. Ozoneinduced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc. Natl. Acad. Sci. USA 93: 5099–5104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shena, M., Shalon, D., Davis, R.W. and Brown, P.O. 1995. Quantitative monitoring of gene expression patterns with a complimentary DNA microarray. Science 270: 467–470.

    Article  Google Scholar 

  • Srivastava, S., Chandra, A., Bhatnagar, A., Srivastava, S.K. and Ansari, N.H. 1995. Lipid peroxidation product, 4-hydroxynonenal and its conjugate with GSH are excellent substrates of bovine lens aldose reductase. Biochem. Biophys. Res. Commun. 217: 741–746.

    Article  CAS  PubMed  Google Scholar 

  • Staswick, P.E., Su, W. and Howell, S.H. 1992. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc. Natl. Acad. Sci. USA 89: 6837–6840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamaoki, M., Matsuyama, T., Kanna, M., Nakajima, N., Kubo, A., Aono, M. and Saji H. 2003. Differential O3 sensitivity among Arabidopsis accessions and its relevance to ethylene synthesis. Planta 216: 552–560.

    CAS  PubMed  Google Scholar 

  • Thomma, B.P.H.J., Penninckx, I.A.M.A., Broekart, W.F. and Cammue, B.P.A. 2001. The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13: 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Treshow, M. and Anderson, F.K. 1989. Plant Stress from Air Pollution. John Wiley, New York.

    Google Scholar 

  • Vahala, J., Ruonala, R., Keinanen, M., Tuominen, H. and Kangasjärvi, J. 2003. Ethylene insensitivity modulates ozone-induced cell death in birch. Plant Physiol. 132: 185–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, R., Guegler, K., LaBrie, S.T. and Crawford, N.M. 2000. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12: 1491–1509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, P., Ma, L., Hou, X., Wang, M., Wu, Y., Liu, F. and Deng, X.W. 2003. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol. 132: 1260–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, M., Åslund, F. and Storz, G. 1998. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279: 1718–1721.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Tamaoki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamaoki, M., Nakajima, N., Kubo, A. et al. Transcriptome analysis of O3-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression. Plant Mol Biol 53, 443–456 (2003). https://doi.org/10.1023/B:PLAN.0000019064.55734.52

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000019064.55734.52

Navigation