Skip to main content
Log in

Application of Chromium-Arene Complexes in the Organic Synthesis. Efficient Synthesis of Stilbene Phytoalexins

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Planar chiral η6-arene-Cr(CO)3 complexes represent highly valuable building blocks for the diastereo- and enantioselective synthesis. Their employment as synthons offer new and unique opportunities for the stereoselective multistep synthesis of complex natural products. The strategy of novel efficient synthesis of stilbene phytoalexins was based on arene chromium chemistry and the chemical and stereochemical effects of the metal unit on the reactivity of complexed arene ligand and stereochemical features of such compounds. Two variants for the construction of the trans-stilbene and diarylethanol framework via facilitated benzylic deprotonation of an η6-benzene-Cr(CO)3 complex and subsequent coupling with para-anisaldehyde in an aldol-type or a Wittig–Horner reaction were suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fischer, E.O. and Öfele, K., Chem. Ber., 1957, vol. 90,no. 11, p. 2532.

    Google Scholar 

  2. Hudecek, M. and Toma, S., J. Organomet. Chem., 1990, vol. 393,no. 1, p. 115.

    Google Scholar 

  3. Goti, A. and Semmelhack, M.F., J. Organomet. Chem., 1994, vol. 480,no. 1, p. 4.

    Google Scholar 

  4. Wolfgramm, R. and Laschat, S., J. Organomet. Chem., 1999, vol. 575,no. 1, p.14.

  5. Kündig, E.P., Perret, C., Sprichiger, S., et al., J. Organomet. Chem., 1985, vol. 286,no.1, p.183.

    Google Scholar 

  6. Schlögl, K., Organometallics in Organic Synthesis, Werner, H. and Erker, G., Eds, Berlin: Springer, 1989, vol. 2, p. 63.

    Google Scholar 

  7. Semmelhack, M.F., Comprehensive Organometallic Chemistry II, Abel, E.W., Stone, F.G.A., and Wilkinson, G., Eds., New York: Pergamon, 1995, vol. 12, p.1017.

    Google Scholar 

  8. Semmelhack, M.F., Comprehensive Organometallic Chemistry, Trost, B.M. and Fleming, I., Eds., Oxford: Pergamon, 1991, vol. 4, p. 517.

    Google Scholar 

  9. Pape, A.R., Kaliappan, K.R., and Kundig, E.P., Chem. Rev., 2000, vol. 100,no. 8, p. 2917.

    PubMed  Google Scholar 

  10. Semmelhack, M.F., Bisaha, J., and Czarny, M., J. Am. Chem. Soc., 1979, vol. 101,no. 3, p. 768.

    Google Scholar 

  11. Gard, R.J. and Trahanovsky, W.S., J. Org. Chem., 1980, vol. 45,no. 3, p. 2560.

    Google Scholar 

  12. Schmalz, H.-G., Volk, T., Bernicke, D., and Huneck, S., Tetrahedron, 1997, vol. 53,no. 21, p. 9219.

    Google Scholar 

  13. Pfletschinger, A., Dargel, T.K., Bats, J.W., et al., Chem. Eur. J., 1999, vol. 5,no. 2, p. 537.

    Google Scholar 

  14. Metric, C.A., Hietbrink, B.N., and Houk, K.N., J. Org. Chem., 2001, vol. 66,no. 20, p. 6738.

    PubMed  Google Scholar 

  15. Davies, S.G., Coote, S.J., and Goodfellow, C.L., Advances in Metal Organic Chemistry, Liebeskind, L.S., Ed., London: JAI, 1989, vol. 2, p. 1.

    Google Scholar 

  16. Schnitzer, D., Abel, U., and Jones, P.G., Synlett, 1997, no. 5, p. 632.

  17. Zemolka, S., Schmalz, H.-G., and Lex, J., Angew. Chem., 2002, vol. 114,no. 14, p. 2635.

    Google Scholar 

  18. Volk, T., Bernicke, D., Bats, J.W., and Schmalz, H.-G., Eur. J. Inorg. Chem., 1998, no.12, p. 1883.

  19. Baird, P.D., Blagg, J., Davies, S.G., and Sutton, K.H., Tetrahedron, 1988, vol. 44,no. 1, p. 171.

    Google Scholar 

  20. Geller, T., Schmalz, H.-G., and Bats, J.W., Tetrahedron Lett., 1998, vol. 39,no. 12, p. 1537.

    Google Scholar 

  21. Schmalz, H.-G., Arnold, M., Hollander, J., and Bats, J.W., Angew. Chem., 1994, vol. 106,no, 2, p. 77.

    Google Scholar 

  22. Uemura, M., Isobe, K., Take, K., and Hayashi, Y., J. Org. Chem., 1986, vol. 51,no. 15, p. 2859.

    Google Scholar 

  23. Netz, A., Polborn, K., and Muller, T.J.J., Organometallics, 2001, vol. 20,no. 3, p. 376.

    Google Scholar 

  24. Schmalz, H.-G., Koenig, C.B., Bernicke, D., Siegel, S., and Pfeltschinger, A., Angew. Chem., 1999, vol. 111,no. 12, p. 1721.

    Google Scholar 

  25. Uemura, M. and Taniguchi, N., Tetrahedron, 1998, vol. 54,no. 42, p. 12775.

    Google Scholar 

  26. Taniguchi, N., Hata, T., and Uemura, M., Angew. Chem., 1999, vol. 111,no. 21, p. 1311.

    Google Scholar 

  27. Merlic, C.A. and Walsh, J.C., J. Org. Chem., 2001, vol. 66,no. 7, p. 2265.

    PubMed  Google Scholar 

  28. Wilhelm, R. and Widdowson, D.A., J. Chem. Soc., Perkin Trans. 1, 2000, no. 18, p. 3808.

    Google Scholar 

  29. Muller, T.J.J., Ansorge, M., and Polborn, K., J. Organomet. Chem., 1999, vol. 578,no. 2, p. 252.

    Google Scholar 

  30. Tranchier, J.-P., Chavignon, R., Prim, D., et al., Tetrahedron Lett., 2001, vol. 42,no. 19, p. 3311.

    Google Scholar 

  31. Kündig, E.P., Ratni, H., Crousse, B., and Bernardinelli, G., J. Org. Chem., 2001, vol. 66,no. 5, p. 1852.

    PubMed  Google Scholar 

  32. Kamikawa, K. and Uemura, M., Synlett, 2000, no. 7, p. 938.

  33. Monovich, L.G., Huerou, Y.Le., Ronn, M., and Molander, G.A., J. Am. Chem. Soc., 2000, vol. 122,no. 1, p. 52.

    Google Scholar 

  34. Colley, J.H., Hilt, E., and Semmelhack, M.F., Tetrahedron Lett., 1998, vol. 39,no. 42, p. 7683.

    Google Scholar 

  35. Rigby, J.H. and Kondratenko, M.A., Org. Lett., 2001, vol. 3,no. 21, p. 3683.

    PubMed  Google Scholar 

  36. Bolm, C. and Muniz, K., Chem. Soc. Rev., 1999, vol. 28,no. 1, p. 51.

    Google Scholar 

  37. Pasquier, C., Pelinski, L., Brocard, J., et al., Tetrahedron Lett., 2001, vol. 42,no. 18, p. 2809.

    Google Scholar 

  38. Jones, G.B., Guzel, M., and Chang, Y.K., Tetrahedron: Asymmetry, 2000, vol. 11,no. 6, p. 1267.

    Google Scholar 

  39. Malfait, M., Pelinski, L., and Brocard, J., Tetrahedron: Asymmetry, 1998, vol. 9,no. 20, p. 3625.

    Google Scholar 

  40. Chapuis, C. and Barthe, M., and De Saint Laumer, J.-Y., Helv. Chim. Acta, 2001, vol. 84,no. 3, p. 730.

    Google Scholar 

  41. Engert, U., Haerter, R., Vasen, D., et al., Organometallics, 1999, vol. 18,no. 21, p. 4290.

    Google Scholar 

  42. Majdalani, A. and Schmalz, H.-G., Synlett, 1997, no. 8, p. 9212.

  43. Schmalz, H.-G., Majdalani, A., Geller, T., et al., Tetrahedron Lett., 1995, vol. 36,no. 27, p. 4777.

    Google Scholar 

  44. Geller, T., Schmalz, H.-G., and Bats, J.W., Tetrahedron Lett., 1998, vol. 39,no. 12, p. 1537.

    Google Scholar 

  45. Dehmel, F. and Schmalz, H.-G., Org. Lett., 2001, vol. 3,no. 22, p. 3597.

    Google Scholar 

  46. Dehmel, F., Lex, J., and Schmalz, H.-G., Org. Lett., 2002, vol. 4,no. 22, p. 3915.

    PubMed  Google Scholar 

  47. Uemura, M., Nishimura, H., and Hayashi, Y., J. Am. Chem. Soc., 1991, vol. 113,no. 14, p. 5402.

    Google Scholar 

  48. Uemura, M., Nishimura, H., and Hayashi, Y., Tetrahedron Lett., 1990, vol. 31,no. 13, p. 2319.

    Google Scholar 

  49. Semmelhack, M.F., Knochel, P., and Singleton, T., Tetrahedron Lett., 1993, vol. 34,no. 28, p. 5051.

    Google Scholar 

  50. Schellhaas, K. and Schmalz, H.-G., Angew. Chem., 1996, vol. 108,no. 11, p. 2277.

    Google Scholar 

  51. Ratni, H. and Kundig, E.P., Org. Lett., 2000, vol. 2,no. 13, p. 1983.

    Google Scholar 

  52. Nicolau, K.C., Cho, S.Y., Hughes, R., et al., J. Eur. Chem., 2001, vol. 7,no. 17, p. 3798.

    Google Scholar 

  53. Kalinin, V.N., Usp. Khim., 1987, vol. 56,no. 7, p. 1190.

    Google Scholar 

  54. Kalinin, V.N., Cherepanov, I.A., and Moiseev, S.K., J. Organomet. Chem., 1997, vol. 536,no. 2, p. 437.

    Google Scholar 

  55. Jang, M., Cai, L., Udeani, G.O., et al., Science, 1997, vol. 275,no. 5297, p. 218.

    Article  PubMed  Google Scholar 

  56. Bhat, K.P.L., Kosmeder, J.W., and Pezzuto, J.M., Antioxid. Redox Sign., 2001, vol. 3,no. 4, p. 1041.

    Google Scholar 

  57. Papper, V. and Likhtenshtein, G.I., J. Photochem. Photobiol., A, 2001, vol. 140,no. 1, p. 39.

    Google Scholar 

  58. Savouret, J.F. and Quesne, M., Biomed. Pharmacother., 2002, vol. 56,no. 1, p. 84.

    PubMed  Google Scholar 

  59. Shigematsu, S., Ishida, S., Hara, M., et al., Free Radical Biol. Med., 2003, vol. 34,no. 7, p. 810.

    Google Scholar 

  60. Meier, H. and Dullweber, U., J. Org. Chem., 1997, vol. 62,no. 12, p. 4821.

    Google Scholar 

  61. Alonso, E., Ramon, D.J., and Yus, M., J. Org. Chem., 1997, vol. 62,no. 2, p. 417.

    PubMed  Google Scholar 

  62. Guiso, M., Marra, C., and Farina, A., Tetrahedron Lett., 2002, vol. 43,no. 4, p. 597.

    Google Scholar 

  63. Jeffery, T. and Ferber, B., Tetrahedron Lett., 2003, vol. 44,no. 1, p. 193.

    Google Scholar 

  64. Andrus, M.B., Liu, J., Meredith, E.L., and Nartey, E., Tetrahedron Lett., 2003, vol. 44,no. 26, p. 4819.

    Google Scholar 

  65. Bailey, J.A. and Mansfield, J.W., Phytoalexins, Glasgow: Bkackie, 1982.

    Google Scholar 

  66. Tyukavkina, N.A., Gromova, A.S., Luzkii, V.I., and Voronov, V.K., Khim. Prirod. Soed., 1972, vol. 11,no. 3, p. 600.

    Google Scholar 

  67. Bhat, K.P.L. and Pezzuto, J.M., Ann. Acad. Sci., 2002, vol. 957,no. 48, p. 21044.

    Google Scholar 

  68. Shin, N.H., Ryu, S.Y., Lee, H.S., et al., Planta Med., 1998, vol. 64,no. 2, p. 283.

    PubMed  Google Scholar 

  69. Rolfs, C.H. and Kindl, H., Plant Physiol., 1984, vol. 75,no. 15, p. 489.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polunin, K.E., Schmalz, HG. Application of Chromium-Arene Complexes in the Organic Synthesis. Efficient Synthesis of Stilbene Phytoalexins. Russian Journal of Coordination Chemistry 30, 252–261 (2004). https://doi.org/10.1023/B:RUCO.0000022800.70211.7d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUCO.0000022800.70211.7d

Keywords

Navigation