Skip to main content
Log in

Anisotropic Etching of SiO2 in High-Voltage Gas-Discharge Plasmas

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

An experiment is reported on anisotropic etching in a CF4–O2plasma produced by high-voltage gas discharge. The process is applied to SiO2and is also effected on SiC, Si, C (diamond), and As2S3. It is shown that the etch rate is mainly dependent on the oxygen percentage, plasma parameters, and the wafer temperature. It is established that etch rate is maximal at oxygen percentages of 0.8–1.5%, discharge currents of 80–140 mA, and wafer temperatures of 390–440 K. The etching is found to be uniform within 1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Muller, R.S. and Kamins, T.I., Device Electronics for Integrated Circuits, New York: Wiley, 1986, 2nd ed. Translated under the title Elementy integral'nykh skhem, Moscow: Mir, 1989.

    Google Scholar 

  2. Metody komp'yuternoi optiki (Methods of Computer Optics), Soifer, V.A., Ed., Moscow: Fizmatlit, 2000.

    Google Scholar 

  3. Chernyaev, V.N., Fiziko-khimicheskie protsessy v tekhnologii REA (Physical and Chemical Processes in Electronics Manufacture), Moscow: Vysshaya Shkola, 1987.

    Google Scholar 

  4. Kireev, V.Yu., Danilin, B.S., and Kuznetsov, V.I., Plazmokhimicheskoe i ionno-khimicheskoe travlenie mikrostruktur (Micropatterning by Plasma Etching and Reactive Ion Etching), Moscow: Radio i Svyaz', 1983.

    Google Scholar 

  5. Ivanovskii, G.F., Ionno-plazmennaya obrabotka materialov (Plasma and Ion Surface Engineering), Moscow: Radio i Svyaz', 1986.

    Google Scholar 

  6. Orlikovskii, A.A., Plasma Processes in Micro-and Nanoelectronics, Part 2: New-Generation Plasmochemical Reactors in Microelectronics, Mikroelektronika, 1999, vol. 28,no. 6, pp. 415-426.

    Google Scholar 

  7. Kovalevskii, A.A., Malyshev, V.S., Tsybul'skii, V.V., and Sorokin, V.M., Isotropic Plasma Etching of SiO2 Films, Mikroelektronika, 2002, vol. 31,no. 5, pp. 344-349.

    Google Scholar 

  8. Orlikovskii, A.A., Plasma Processes in Micro-and Nanoelectronics, Part 1: Reactive Ion Etching, Mikroelektronika, 1999, vol. 28,no. 5, pp. 344-362.

    Google Scholar 

  9. Vagner, I.V., Bolgov, E.I., Grakun, V.F., Gokhvel'd, V.L., and Kudlai, V.A., Simple Beam-Forming Arrangement for Generating Arbitrarily Shaped Electron Beams under High-Voltage Gas Discharge, Zh. Tekh. Fiz., 1974, vol. 44, issue 8, pp. 1669-1674.

    Google Scholar 

  10. Kolpakov, A.I. and Kolpakov, V.A., Dragging of Silicon Atoms by Vacancies Created in Molten Aluminum under Ion-Electron Irradiation, Pis'ma Zh. Tekh. Fiz., 1999, vol. 25, issue 15, pp. 58-65.

    Google Scholar 

  11. Komov, A.N., Kolpakov, A.I., Bondareva, N.I., and Zakharenko, V.V., Electron-Beam Soldering Machine for Semiconductor Devices, Prib. Tekh. Eksp., 1984, no. 5, pp. 218-220.

    Google Scholar 

  12. Kolpakov, V.A., Modeling the High-Voltage Gas-Discharge-Plasma Etching of SiO2, Mikroelektronika, 2002, vol. 31,no. 6, pp. 431-440.

    Google Scholar 

  13. Flamm, D.L., Measurements and Mechanisms of Etchant Production During the Plasma Oxidation of CF4 and C2F6, Solid State Technol., 1979, vol. 22,no. 4, pp. 109-116.

    Google Scholar 

  14. Raizer, Yu.P., Fizika gazovogo razryada (Gas-Discharge Physics), Moscow: Nauka, 1987.

    Google Scholar 

  15. Kireev, V.Yu., Nazarov, D.A., and Kuznetsov, V.I., Ion-Enhanced Dry Etching, Elektron. Obrab. Mater., 1986, no. 67, pp. 40-43.

    Google Scholar 

  16. Gerlach-Meyer, V., Ion Enhanced Gas-Surface Reactions: A Kinetic Model for the Etching Mechanism, Surf. Sci., 1981, vol. 103,no. 213, pp. 524-534.

    Google Scholar 

  17. Harsberger, W.R. and Porter, R.A., Spectroscopic Analysis of RF Plasmas, Solid State Technol., 1979, vol. 22,no. 4, pp. 90-103.

    Google Scholar 

  18. Horiike, Y., Dry Etching: An Overview, Jpn. Annu. Rev. Electron. Comput. Telecommun. Semicond. Technol., 1983, vol. 8, pp. 55-72.

    Google Scholar 

  19. Kolpakov, A.I. and Rastegaev, V.P., Raschet elektricheskogo polya gazorazryadnoi pushki vysokovol'tnogo tipa (Electric-Field Analysis of a High-Voltage Gas-Discharge Gun), Available from VINITI, 1979, no. 1381-79 Dep.

  20. Poulsen, R.G. and Brochu, M., Importance of Temperature and Temperature Control in Plasma Etching, Si Bricond Silicon, 1973, no. 1973.

  21. Moreau, W.M., Semiconductor Lithography: Principles, Practices, and Materials, New York: Plenum, 1988. Translated under the title Mikrolitografiya. Printsipy, metody, materialy, Moscow: Mir, 1990.

    Google Scholar 

  22. Mirkin, L.I., Spravochnik po rentgenostrukturnomu analizu polikristallov (Handbook of X-ray Crystallography for Polycrystalline Materials), Prof. Umanskii, Ya.S., Ed., Moscow: Gosudarstvennoe Izdatel'stvo Fiziko-Matematicheskoi Literatury, 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazanskii, N.L., Kolpakov, V.A. & Kolpakov, A.I. Anisotropic Etching of SiO2 in High-Voltage Gas-Discharge Plasmas. Russian Microelectronics 33, 169–182 (2004). https://doi.org/10.1023/B:RUMI.0000026175.29416.eb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUMI.0000026175.29416.eb

Keywords

Navigation