Skip to main content
Log in

Semi-parametric extended Poisson process models for count data

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

A general framework for the analysis of count data (with covariates) is proposed using formulations for the transition rates of a state-dependent birth process. The form for the transition rates incorporates covariates proportionally, with the residual distribution determined from a smooth non-parametric state-dependent form. Computation of the resulting probabilities is discussed, leading to model estimation using a penalized likelihood function. Two data sets are used as illustrative examples, one representing underdispersed Poisson-like data and the other overdispersed binomial-like data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ball F. 1995. A note on variation in birth processes. Math. Scientist 20: 50–55.

    Google Scholar 

  • Ball F. and Donnelly P. 1987. Interparticle correlation in death processes with application to variability in compartmental models. Adv. Appl. Prob. 18:755–766.

    Google Scholar 

  • Bartlett M.S. 1978. AnIntroduction to Stochastic Processes. Cambridge University Press, Cambridge.

    Google Scholar 

  • Brown T.C. and Donnelly P. 1993. On conditional intensities and on interparticle correlations in nonlinear death processes. Adv. Appl. Prob. 25: 255–260.

    Google Scholar 

  • Consul P.C. 1989. Generalized Poisson Distributions. Marcel Dekker Inc., New York.

    Google Scholar 

  • Cox D.R. and Miller H.D. 1965. The Theory of Stochastic Processes. Methuen, London.

    Google Scholar 

  • Cox D.R. and Reid N. 1987. Parameter orthogonality and approximate conditional inference (with discussion). J. R. Statist. Soc. B 49: 1–39.

    Google Scholar 

  • Daniels H.E. 1982. The saddlepoint approximation for a general birth process. J. Appl. Prob. 19: 20–28.

    Google Scholar 

  • Dean C.B. 1998. Over-dispersion. In: Armitage P. and Colton T. (Eds.), Encyclopedia of Biostatistics, Wiley, London, pp. 3226–3232.

    Google Scholar 

  • Donnelly P., Kurtz T., and Marjoram P. 1993. Correlation and variability in birth processes. J. Appl. Prob. 30: 275–284.

    Google Scholar 

  • Efron B. 1978. Regression and ANOVA with zero-one data: Measures of residual variation. J. Am. Statist. Ass. 73: 113–121.

    Google Scholar 

  • Efron B. 1986. Double exponential families and their use in generalized linear regression. J. Am. Statist. Ass. 81: 709–721.

    Google Scholar 

  • Eubank R.L. 1988. Spline Smoothing and Nonparametric Regression. Marcel Dekker Inc., New York.

    Google Scholar 

  • Faddy M.J. 1997a. Extended Poisson process modelling and analysis of count data. Biometrical Journal 39: 431–440.

    Google Scholar 

  • Faddy M.J. 1997b. On extending the negative binomial distribution and the number of weekly winners of the UK national lottery. Math. Scientist 22: 77–82.

    Google Scholar 

  • Faddy M.J. 1998a. Markov process modelling and analysis of discrete data. Appl. Stochastic Models and Data Analysis 13: 217–223.

    Article  Google Scholar 

  • Faddy M.J. 1998b. Stochastic models for analysis of species abundance data. In: Fletcher D.J., Kavalieris L. and Manly B.F.J. (Eds.), Statistics in Ecology and Environmental Monitoring 2. University of Otago Press, Dunedin, pp. 33–40.

    Google Scholar 

  • Faddy M.J. and Bosch R.J. 2001. Likelihood-based modelling and analysis of data under-dispersed relative to the Poisson distribution. Biometrics 57: 620–624.

    Article  Google Scholar 

  • Faddy M.J. and Fenlon J.S. 1999. Stochastic modelling of the invasion process of nematodes in fly larvae. J. R. Statist. Soc. C 48: 31–37.

    Article  Google Scholar 

  • Good I.J. and Gaskins R.A. 1971. Nonparametric roughness penalties for probability densities. Biometrika 58: 255–277.

    Google Scholar 

  • Green P.J. 1987. Penalized likelihood for general semi-parametric regression models. Int. Statist. Rev. 55: 245–259.

    Google Scholar 

  • Green P.J. and Silverman B.W. 1994. Nonparametric Regression and Generalized Linear Models. Chapman and Hall, London.

    Google Scholar 

  • Hastie T.J. and Tibshirani R.J. 1990. Generalized Additive Models. Chapman and Hall, London.

    Google Scholar 

  • Lindsey J.K. 1999. Models for Repeated Measurements, 2nd edition. Clarendon Press, Oxford.

    Google Scholar 

  • McCaughran D.A. and Arnold D.W. 1976. Statistical models for numbers of implantation sites and embryonic deaths in mice. Toxicol. and Appl. Pharmacol. 38: 325–333.

    Article  Google Scholar 

  • McCullagh P. and Nelder J.A. 1989. Generalized Linear Models, 2nd edition. Chapman and Hall, London.

    Google Scholar 

  • Moler C.B. and van Loan C.F. 1978. Nineteen dubious ways to compute the exponential of a matrix. SIAM Review 20: 801–836.

    Google Scholar 

  • Nelson D.L. 1975. Some remarks on generalizations of the negative binomial and Poisson distributions. Technometrics 17: 135–136.

    Google Scholar 

  • O’Sullivan F., Yandell B.S., and Raynor J. Jr. 1986. Automatic smoothing of regression functions in generalized linear models. J. Am. Statist. Ass. 81: 96–103.

    Google Scholar 

  • Podlich H.M., Faddy M.J., and Smyth G.K. 1999. Likelihood computations for extended Poisson process models. InterStat, Sept., no. 1, 15 p.

  • Reinsch C.H. 1967. Smoothing by spline functions. Numer. Math. 10: 177–183.

    Google Scholar 

  • Sidje R.B. 1998. EXPOKIT: Software package for computing matrix exponentials. ACM Transactions on Mathematical Software 24: 130–156.

    Article  Google Scholar 

  • Silverman B.W. 1985. Some aspects of the spline smoothing approach to non-parametric regression curve fitting. J. R. Statist. Soc. B 47: 1–52.

    Google Scholar 

  • Smyth G.K. and Podlich H.M. 2002. An improved saddlepoint approximation based on the negative binomial distribution for the general birth process. Computational Statistics 17: 17–28.

    Article  Google Scholar 

  • Stewart W.J. 1994. Introduction to the Numerical Solution of Markov Chains. Princeton University Press, New Jersey.

    Google Scholar 

  • Tapia R.A. and Thompson J.R. 1978. Nonparametric Probability Density Estimation. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Toscas P.J. and Faddy M.J. 2003. A likelihood-based analysis of longitudinal count data using a generalised Poisson model. Statistical Modelling 3: 99–108.

    Article  Google Scholar 

  • Tukey J.W. 1949. One degree of freedom for nonadditivity. Biometrics 5: 232–242.

    Google Scholar 

  • Verbyla A.P., Cullis B.R., Kenward M.G., and Welham S.J. 1999. The analysis of designed experiments and longitudinal data by using smoothing splines (with discussion). J. R. Statist. Soc. C 48: 269–311.

    Article  Google Scholar 

  • Wecker W.E. and Ansley C.F. 1983. The signal extraction approach to nonlinear regression and spline smoothing. J. Am. Statist. Ass. 78: 81–89.

    Google Scholar 

  • Winkelman R. 1997. Econometric Analysis of Count Data. Springer, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podlich, H.M., Faddy, M.J. & Smyth, G.K. Semi-parametric extended Poisson process models for count data. Statistics and Computing 14, 311–321 (2004). https://doi.org/10.1023/B:STCO.0000039480.66002.5a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:STCO.0000039480.66002.5a

Navigation