Skip to main content
Log in

Monodromy Approach to the Scaling Limits in Isomonodromy Systems

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The isomonodromy deformation method is applied to the scaling limits in the linear N × N matrix equations with rational coefficients to obtain the deformation equations for the algebraic curves that describe the local behavior of the reduced versions for the relevant isomonodromy deformation equations. The approach is illustrated by the study of the algebraic curve associated with the n-large asymptotics in the sequence of the biorthogonal polynomials with cubic potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. L. Ince, Ordinary Differential Equations [in Russian], DNTVU, Kharkov (1939); English transl., Dover, New York (1956).

    Google Scholar 

  2. A. A. Kapaev, CRM Proc. Lect. Notes, 32, 157–179 (2002); nlin.SI/0105002 (2001).

    Google Scholar 

  3. M. Jimbo, T. Miwa, and K. Ueno, Phys. D, 2, 306–352 (1981).

    Google Scholar 

  4. H. Flaschka and A. C. Newell, Comm. Math. Phys., 76, 65–116 (1980).

    Google Scholar 

  5. A. R. Its and V. Yu. Novokshenov, The Isomonodromy Deformation Method in the Theory of Painlevé Equations (Lect. Notes Math., Vol. 1191), Springer, Berlin (1986).

    Google Scholar 

  6. M. L. Mehta, Random Matrices, Acad. Press, New York (1967).

    Google Scholar 

  7. P. Nevai, J. Approx. Theory, 48, 3–167 (1986).

    Google Scholar 

  8. A. R. Its, A. V. Kitaev, and A. S. Fokas, Russ. Math. Surveys, 45, 155–157 (1990); Comm. Math. Phys., 142, 313–344 (1991); 147, 395–430 (1992).

    Google Scholar 

  9. N. M. Ercolani and K. T.-R. McLaughlin, Phys. D, 152–153, 232–268 (2001).

    Google Scholar 

  10. M. Bertola, B. Eynard, and J. Harnad, Comm. Math. Phys., 229, 73–120 (2002); nlin.SI/0108049 (2001).

    Google Scholar 

  11. P. Zinn-Justin, Nucl. Phys. B, 634, 417–432 (2002); math-ph/0202045 (2002).

    Google Scholar 

  12. M. V. Fedoryuk, Asymptotic Analysis: Linear Ordinary Differential Equations [in Russian], Nauka, Moscow (1983); English transl., Springer, Berlin (1993).

    Google Scholar 

  13. W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Interscience, New York (1965).

    Google Scholar 

  14. M. V. Fedoryuk, Differential Equations, 22, 675–680 (1986).

    Google Scholar 

  15. M. Jimbo and T. Miwa, Phys. D, 2, 407–448 (1981); 4, 26–46 (1981).

    Google Scholar 

  16. R. Garnier, Ann. Sci. Ecole Norm. Super., 34, 239–253 (1917); H. Flaschka and A. C. Newell, Phys. D, 3, 203–221 (1981).

    Google Scholar 

  17. A. A. Kapaev, J. Math. Sci., New York, 83, No. 1, 38–61 (1997); “Scaling limits in the fourth Painlevé transcendent,” PDMI Preprint 15/1996, PDMI, St. Petersburg (1996); “Discriminant set for the scaling limits in the third Painlevé transcendent,” PDMI Preprint 21/1997, PDMI, St. Petersburg (1997).

    Google Scholar 

  18. A. A. Kapaev, J. Phys. A, 36, 4629–4640 (2003); nlin.SI/0207036 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapaev, A.A. Monodromy Approach to the Scaling Limits in Isomonodromy Systems. Theoretical and Mathematical Physics 137, 1691–1702 (2003). https://doi.org/10.1023/B:TAMP.0000007917.73394.24

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TAMP.0000007917.73394.24

Navigation