Skip to main content
Log in

Ornamental Chrysanthemums: Improvement by Biotechnology

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

The in vitro tissue culture and micropropagation of chrysanthemums, important floricultural (cut-flower) and ornamental (pot and garden) plants, have been well studied. An increase in genetic transformation studies aimed at improving aesthetic and growth characteristics of the plants has been hampered by low transformation efficiencies and genotype dependence of protocols. As a result chrysanthemum regeneration studies have once again emerged as an essential complement of transformation studies. This review highlights the impact that biotechnology has had on the improvement of chrysanthemum in vitro cell, tissue and organ culture, micropropagation and transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahloowalia BS & Maluszynski M (2001) Induced mutations -- a new paradigm in plant breeding. Euphytica 118: 167–173

    Google Scholar 

  • Ahmed HA (1986) In vitro regeneration and propagation of meristem apices of chrysanthemum. Kerteszetiegyetem Kozlemenyei 50: 199–214

    Google Scholar 

  • Ahmed HA & Andrea M (1987) Effect of Chrysanthemum multiplication by meristem-tip culture. Acta Hort. 212: 98–99

    Google Scholar 

  • Amagasa K & Kameya T (1989) Plant regeneration and callus formation from Chrysanthemum morifolium, C. coronarium and Lactuca sativa protoplasts. J. Jap. Soc. Hort. Sci. 57: 620–625

    Google Scholar 

  • Anderson NO, Ascher PD, Widmer RE & Luby JJ (1990) Rapid regeneration cycling of chrysanthemum using laboratory seed development and embryo rescue techniques. J. Am. Soc. Hort. Sci. 115: 329–336

    Google Scholar 

  • Annadana S, Rademaker W, Ramanna M, Udayakumar M & de Jong J (2000) Response of stem explants to screening and explant source as a basis for methodological advancing of regeneration protocols for chrysanthemum. Plant Cell Tiss. Org. Cult. 62: 47–55

    Google Scholar 

  • Annadana S, Mlynárová L, Udayakumar M, de Jong J & Nap JP (2001) The potato Lhca3.St.1 promoter confers high and stable transgene expression in chrysanthemum, in contrast to CaMV-based promoters. Mol. Breed. 8: 335–344

    Google Scholar 

  • Bajaj YPS, Sidhu MMS & Gill APS (1992) Micropropagation of Chrysanthemum. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, Vol 20: High-Tech Micropropagation IV (pp. 69–80). Springer-Verlag, Berlin, Germany

    Google Scholar 

  • Bannier LJ & Steponkus PL (1976) Cold acclimation of chrysanthemum callus cultures. J. Am. Soc. Hort. Sci. 101: 409–412

    Google Scholar 

  • Benetka V & Pavingerová D (1995) Phenotypic differences in transgenic plants of chrysanthemum. Plant Breed. 114: 169–173

    Google Scholar 

  • Ben-Jaacov J & Langhans RW (1972) Rapid multiplication of Chrysanthemum plants by stem tip proliferation. HortScience 7: 289–290

    Google Scholar 

  • Bhattacharya P, Dey S, Das N & Bhattacharya BC (1990) Rapid mass propagation of Chrysanthemum morifolium by callus derived from stem and leaf explants. Plant Cell Rep. 9: 439–442

    Google Scholar 

  • Bhattacharya P, Dey S & Bhattacharya BC (1994) Use of low-cost gelling agents and support matrices for industrial scale plant tissue culture. Plant Cell Tiss. Org. Cult. 37: 15–23

    Google Scholar 

  • Boase MR, Miller R & Deroles SC (1997) Chrysanthemum systematics, genetics, and breeding. In: Janick J (ed) Plant Breeding Reviews, Vol 14 (pp. 321–361). John Wiley and Sons, New York

    Google Scholar 

  • Boase MR, Bradley JM & Borst NK (1998a) Genetic transformation mediated by Agrobacterium tumefaciens of florists' chrysanthemum (Dendranthema ×grandiflorum) cultivar ‘Peach Margaret’. In Vitro Cell. Dev. Biol.-Plant 34: 46–51

    Google Scholar 

  • Boase MR, Borst NK & Bradley JM (1998b) Chrysanthemum cultivar-Agrobacterium interactions revealed by GUS expression time course experiments. Sci. Hort. 77: 89–107

    Google Scholar 

  • Broertjies C, Roest S & Bokelmann GS (1976) Mutation breeding of Chrysanthemum morifolium Ram. using in vivo and in vitro adventitious bud techniques. Euphytica 25: 11–19

    Google Scholar 

  • Bush R, Earle ED & Langhans RW (1976) Plantlets from petal segments, petal epidermis and shoot tips of the periclinal chimera, Chrysanthemum morifolium ‘Indianapolis’ Am. J. Bot. 63: 729–737

    Google Scholar 

  • Chakrabarty D, Mandal AKA & Datta SK (1999) Management of chimera through direct shoot regeneration from florets of chrysanthemum (Dendranthema grandiflora Ramat.). J. Hort. Sci. Biotechnol. 74: 293–296

    Google Scholar 

  • Chakrabarty D, Mandal AKA & Datta SK (2000) SEM and light microscopic studies on direct shoot regeneration from ray florets of Chrysanthemum. Israel J. Plant Sci. 48: 105–107

    Google Scholar 

  • Corneanu GC & Corneanu M (1992) Preliminary studies about human bio-energy effect on in vitro vegetal cultures. Rev. Roum. Biol. 37: 113–117

    Google Scholar 

  • Courtney-Gutterson N, Otten A, Firoozabady E, Akerboom M, Lemieux C, Nicholas J, Morgan A & Robinson KEP (1993) Production of genetically engineered color-modified chrysanthemum plants carrying a homologous chalcone synthase gene and their field performance. Acta Hort. 336: 57–62

    Google Scholar 

  • Courtney-Gutterson N, Napoli C, Lemieux C, Morgan A, Firoozabady E & Robinson KEP (1994) Modification of lower color in florist's chrysanthemum: production of a white-flowering variety through molecular genetics. BioTechnology 12: 268–271

    PubMed  Google Scholar 

  • CPRO-DLO (1997) Ornamental Crops. Annual Report (p. 13).

  • Datta SK, Chakrabarty D, Saxena M, Mandal AKA & Biswas AK (2001a) Direct shoot regeneration from florets of chrysanthemum cultivars. Ind. J. Genet. 61: 373–376

    Google Scholar 

  • Datta SK, Mandal AKA & Saxena M (2001b) Direct organogenesis from ray and disk florets of a newly evolved chlorophyll variegated chrysanthemum (Chrysanthemum morifolium). Ind. J. Agric. Sci. 71: 655–657

    Google Scholar 

  • de Argollo MD, Kirszenzaft SSL & Jesu CO (1998) Influence of nitrogen sources on in vitro morphogenesis of axillary shoots in stem explants of Chrysanthemum morifolium Ramat. Rev. Bras. Bot. 21: 141–147

    Google Scholar 

  • de Jong J & Custers JBM (1986) Induced changes in growth and flowering of chrysanthemum after irradiation and in vitro culture of pedicels and petal epidermis. Euphytica 35: 137–148

    Google Scholar 

  • de Jong J, van Wordragen MF & Rademaker W (1990) Early transformation events in Dendranthema grandiflora. In: Proceedings of EUCARPIA (Section Ornamentals): Integration of In Vitro Techniques in Ornamental Plant Breeding (pp. 156–161). Wageningen

  • de Jong J, Rademaker W & van Wordragen MF (1993) Restoring adventitious shoot formation on chrysanthemum leaf explants following cocultivation with Agrobacterium tumefaciens.Plant Cell Tiss. Org. Cult. 32: 263–270

    Google Scholar 

  • de Jong J, Mertens MJ & Rademaker W (1994) Stable expression of the GUS reporter gene in chrysanthemum depends on binary plasmid T-DNA. Plant Cell Rep. 14: 59–64

    Google Scholar 

  • de Jong J, Rademaker W & Ohishi K (1995) Agrobacterium-mediated transformation of chrysanthemum. Plant Tiss. Cult. Biotechnol. 1: 38–42

    Google Scholar 

  • de Oliveira PD, Moacir P & Renato P (1995) The effect of different concentrations of growth regulators on in vitro shoot proliferation of chrysanthemum (Dendranthema grandiflora Tzvelev). Ciênc. Prát. 19: 397–408

    Google Scholar 

  • de Oliveira PD, Pasqual M & Paiva R (1996) Different concentrations of the MS medium, nitrogen and sucrose on micropropagation of chrysanthemum. Bragantia 55: 9–18

    Google Scholar 

  • Dolgov SV, Mityshkina TU, Rukavtsova EB & Buryanov YI (1995) Production of transgenic plants of Chrysanthemum morifolium. Ramat. with the gene of Bac. thuringiensis δ-endotoxin. Acta Hort. 432: 114–118

    Google Scholar 

  • Dolgov SV, Mitiouchkina TY & Skryabin KG (1997) Agrobacterial transformation of chrysanthemum. Acta Hort. 447: 329–333

    Google Scholar 

  • Dwivedi AK, Banerji BK, Chakrabarty D, Mandal AKA & Datta SK (2000) Gamma ray induced new flower colour chimera and its management through tissue culture. Ind. J. Agric. Sci. 70: 853–855

    Google Scholar 

  • Earle ED & Langhans RW (1974a) Propagation of chrysanthemum in vitro I. Multiple plantlets from shoot tips and the establishment of tissue cultures. J. Am. Soc. Hort. Sci. 99: 128–131

    Google Scholar 

  • Earle ED & Langhans RW (1974b) Propagation of chrysanthemum in vitro II. Production growth and flowering of plantlets from tissue cultures. J. Am. Soc. Hort. Sci. 99: 352–358

    Google Scholar 

  • El-Twab MHA & Kondo K (2001) Molecular cytogenetic identification of the parental genomes in the intergeneric hybrid between Leucanthemella linearis and Nipponanthemum nipponicum during meiosis and mitosis. Caryologia 54: 109–114

    Google Scholar 

  • Endo M & Inada I (1997) Production and characteristics of chromosome-doubled plants of small-flowered garden chrysanthemum, Dendranthema grandiflorum (Ramatt.) Kitam. cv. YS by colchicines treatment of cultured shoot tips. J. Jap. Soc. Hort. Sci. 65: 825–833

    Google Scholar 

  • Endo M, Sasaki T & Inada I (1990) Creation of mutants through tissue culture of edible chrysanthemums Chrysanthemum morifolium Ram. I. Especially the relationship among the different explants and variation in their regenerated plants. J. Fac. Agric. Iwate Univ. 20: 17–34

    Google Scholar 

  • Endo M, Sasaki T & Inada I (1991) Creation of mutants through tissue culture of edible chrysanthemums Chrysanthemum morifolium Ram. II. Especially an attempt to create chromosome-reduced plants by treatment with PFP on agar medium. J. Fac. Agric. Iwate Univ. 20: 91–103

    Google Scholar 

  • Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F & Takagi H (eds) Cryopreservation of Tropical Plant Germplasm: Current Research Progress and Application (pp. 1–362). JIRCAS (Tsukuba), IPGRI (Rome)

  • Fu RZ, Liu M, Liang HJ, Zhang CH, Xue H & Sun YR (1998) Production of transgenic plants of chrysanthemum via Agrobacterium tumefaciens mediated method. Acta Phytophysiol. Sin. 24: 72–76

    Google Scholar 

  • Fujii Y & Shimizu K (1990) Regeneration of plants from achenes and petals of Chrysanthemum coccineum. Plant Cell Rep. 8: 625–627

    Google Scholar 

  • Fukai S (1990) Cryopreservation of chrysanthemum shoot tips. Sci. Hort. 45: 167–174

    Google Scholar 

  • Fukai S (1995) Cryopreservation of germplasm of chrysanthemums. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, Vol. 32, Cryopreservation of Plant Germplasm I (pp. 447–457). Springer-Verlag, Berlin

    Google Scholar 

  • Fukai S & Oë M (1986) Effects of plant growth regulators on organ formation from leaf and stem segments of chrysanthemum. Bull. Osaka Agric. Res. Center 23: 25–31

    Google Scholar 

  • Fukai S & Oë M (1990) Morphological observations of chrysanthemum shoot tips cultured after cryoprotection and freezing. J. Jap. Soc. Hort. Sci. 59: 383–387

    Google Scholar 

  • Fukai S, Goi M & Tanaka M (1994) The chimeric structure of the apical dome of chrysanthemum (Dendranthema grandiflorum (Ramat. Kitam.) is affected by cryopreservation. Sci. Hort. 57: 347–351.

    Google Scholar 

  • Fukai S, de Jong J & Rademaker W (1995) Efficient genetic transformation of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) using stem segments. Breed. Sci. 45: 179–184

    Google Scholar 

  • Fukai S, Kamigaichi Y, Yamasaki N, Zhang W & Goi M (2002) Distribution, morphological variations and cpDNA PCR-RFLP analysis of Dendranthema yoshinaganthum. J. Jap. Soc. Hort. Sci. 71: 114–122

    Google Scholar 

  • George MW & Tripepi RR (2001) Plant Preservative Mixture TM can affect shoot regeneration from leaf explants of chrysanthemum, European birch, and rhododendron. HortScience 36: 768–769

    Google Scholar 

  • Gertsson UE & Andersson E (1985) Propagation of Chrysanthemum ×hortorum and Philodendron scandens by tissue culture. Rapport Instit. Tradgards Svërig Landbruks Univ. 41: 17

    Google Scholar 

  • Hattori K (1992) The process during shoot regeneration in the receptacle culture of chrysanthemum, Chrysanthemum morifolium Ramat. Jap. J. Breed. 42: 227–234

    Google Scholar 

  • Hill GP (1968) Shoot formation in tissue cultures of chrysanthemum ‘Bronze Pride’. Physiol. Plant. 2: 386–389

    Google Scholar 

  • Hosokawa M, Hossain MM, Takemoto T & Yazawa S (1998) Particlegun wounding of explants with and without plant-growth regulators effectively induces shoot formation in African violet. Plant Tiss. Cult. Biotech. 4:35–41

    Google Scholar 

  • Iizuka M, Matsumoto E, Doi A, Madrigal R & Fukushima A (1973) Tubular floret culture of chrysanthemum and cineraria in vitro. Jap. J. Genet. 48: 79–87

    Google Scholar 

  • Ishida I, Tukahara M, Yoshioka M, Ogawa T, Kakitani M & Toguri T (2002) Production of anti-virus, viroid plants by genetic manipulations. Pest Manage. Sci. 58: 1132–1136

    Google Scholar 

  • Jeong JH, Chakrabarty D, Kim SJ & Paek KY (2002) Transformation of chrysanthemum (Dendranthema grandiflorum Kitamura cv. Cheonsu by constitutive expression of rice OsMADS1 gene. J. Kor. Soc. Hort. Sci. 43: 382–386

    Google Scholar 

  • Kagami Y & Okamura M (1997) Flower production in Japan and agribio business and technology of Kirin: a case in private sector approach. In: Watanabe K & Pehu E (eds). Plant Biotechnology and Plant Genetic Resources For Sustainability and Productivity (pp. 173–181) R.G. Landes Co.

  • Kaul V, Miller RM, Hutchinson JF & Richards D (1990) Shoot regeneration from stem and leaf explants of Dendranthema grandiflora Tzvelev (syn. Chrysanthemum morifolium Ramat.). Plant Cell Tiss. Org. Cult. 21: 21–30

    Google Scholar 

  • Khalid N, Davey MR & Power JB (1989) An assessment of somaclonal variation in Chrysanthemum morifolium: the generation of plants of potential commercial value. Sci. Hort. 38: 287–294

    Google Scholar 

  • Khehra M, Lowe KC, Davey MR & Power JB (1995) An improved micropropagation system for Chrysanthemum based on Pluronic F-68-supplemented media. Plant Cell Tiss. Org. Cult. 41: 87–90

    Google Scholar 

  • Kim J, Park Y, Jung S, Chung H, Shin YS & Sheop J (1998) Transformation of chrysanthemum by Agrobacterium tumefaciens with three vectors. J. Kor. Soc. Hort. Sci. 39: 360–366

    Google Scholar 

  • Kim M, Kim J & Hee Y (1998) Plant regeneration and flavonoid 3′,5′-hydroxylase gene transformation of Dendranthema indicum and Dendranthema zawadskii. J. Kor. Soc. Hort. Sci. 39: 355–359

    Google Scholar 

  • Kudo S, Shibata N, Kanno Y & Suzuki M (2002) Transformation of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) via Agrobacterium tumefaciens. Acta Hort. 572: 139–147

    Google Scholar 

  • Kumar A & Kumar VA (1995) High-frequency in vitro propagation in Chrysanthemum maseimum. Ind. Hort. 1: 37–38

    Google Scholar 

  • Lazar M & Cachita CD (1982) Micropropagation of Chrysanthemus. II. In vitro culture of shoot meristems. Product. Veg. Hort. 31: 32–35

    Google Scholar 

  • Lazar M & Cachita CD (1983) Micropropagation of Chrysanthemus. III. Chrysanthemum multiplication in vitro from capitulum explants. Product. Veg. Hort. 32: 44–47

    Google Scholar 

  • Lazar M, Cachita CD & Bader SM (1981) Micropropagation of Chrysanthemus. I.In vitro multiplication of Chrysanthemus by floral peduncle explants. Product. Veg. Hort. 30: 18–23

    Google Scholar 

  • Ledger SE, Deroles SC & Given NK (1991) Regeneration and Agrobacterium-mediated transformation of chrysanthemum. Plant Cell Rep. 10: 195–199

    Google Scholar 

  • Lee CH & Kim KS (2000) Genetic diversity of Chrysanthemum zawadskii Herb. and the related groups in Korea using RAPDs. J. Kor. Soc. Hort. Sci. 41: 230–236

    Google Scholar 

  • Lee JK, Park KY & Chun CK (1979) In vitro propagation of Chrysanthemum through shoot apical meristem culture. J. Kor. Soc. Hort. Sci. 20: 192–199

    Google Scholar 

  • Lee T, Huang MEE & Pua EC (1997) High frequency shoot regeneration from leaf disk explants of garland chrysanthemum (Chrysanthemum coronarium L.) in vitro. Plant Sci. 126: 219–226

    Google Scholar 

  • Lee Y, Kwon K & Lee YJ (1999) Plant regeneration from leaf segment cultures of chrysanthemum (Dendranthema grandiflora Tzvelev). Kor. J. Plant Tiss. Cult. 26: 59–63

    Google Scholar 

  • Lemieux CS, Firoozabady E & Robinson KEP (1990) In: de Jong J (ed) Agrobacterium-mediated Transformation of Chrysanthemum. Integration of In Vitro Techniques in Ornamental Plant Breeding (pp. 150–155). Wageningen, CPO Press

    Google Scholar 

  • Lindsay GC & Ledger SE (1993) A protoplast to plant system for chrysanthemum Dendranthema zawadskii × D. grandiflora. Plant Cell Rep. 12: 278–280

    Google Scholar 

  • Lowe JM, Davey MR, Power JB & Blundy KS (1993) A study of some factors affecting Agrobacterium-transformation and plant regeneration of Dendranthema grandiflora Tzvelev (syn. Chrysanthemum morifolium Ramat.). Plant Cell Tiss. Org. Cult. 33: 171–180

    Google Scholar 

  • Lu CY, Nugent G & Wardley T (1990) Efficient direct plant regeneration from stem segments of chrysanthemum (Dendranthema morifolium Ramat. cv. Royal Purple). Plant Cell Rep. 8: 733–736

    Google Scholar 

  • Malaure RS, Barclay G, Power JB & Davey MR (1991a) The production of novel plants from florets of Chrysanthemum morifolium using tissue culture 1. Shoot regeneration from ray florets and somaclonal variation exhibited by regenerated plants. J. Plant Physiol. 139: 8–13

    Google Scholar 

  • Malaure RS, Barclay G, Power JB & Davey MR (1991b) The production of novel plants from florets of Chrysanthemum morifolium using tissue culture 2. Securing natural mutations (sports). J. Plant Physiol. 139: 14–18

    Google Scholar 

  • Mandal AKA, Chakrabarty D & Datta SK (2000a) In vitro isolation of solid novel flower colour mutants from induced chimeric ray florets of chrysanthemum. Euphytica 114: 9–12

    Google Scholar 

  • Mandal AKA, Chakrabarty D & Datta SK (2000b) Application of in vitro techniques in mutation breeding of chrysanthemum. Plant Cell Tiss. Org. Cult. 60: 33–38

    Google Scholar 

  • May RA & Trigiano RN (1991) Somatic embryogenesis and plant regeneration from leaves of Dendranthema grandiflora. J. Am. Soc. Hort. Sci. 116: 366–371

    Google Scholar 

  • Miyazaki S & Tashiro Y (1978) Tissue culture of Chrysanthemum morifolium Ramat. IV. On the explant sources for stem segment culture. Agric. Bull. Saga Univ. 44: 67–78

    Google Scholar 

  • Miyazaki S, Tashiro Y & Shimada T (1976) Tissue culture of Chrysanthemum morifolium Ramat. I. Cultivar differences in organ formation. Agric. Bull. Saga Univ. 40: 31–44

    Google Scholar 

  • Miyazaki S, Kishida E, Tashiro Y & Kanazawa K (1979) Tissue culture of Chrysanthemum morifolium Ramat. V. Histological studies on the callus and shoot formation in stem segments cultured in vitro. Agric. Bull. Saga Univ. 46: 43–65

    Google Scholar 

  • Mizutani T & Tanaka T (1994) Study on the floret culture of Higo-chrysanthemum. Proc. School Agric. Kyushu Tokai Univ. 13: 9–14

    Google Scholar 

  • Nhut DT, Teixeira da Silva JA & Aswath CR (2003) The importance of the explant on regeneration in thin cell layer technology. In Vitro Cell. Dev. Biol. 39: 266–276

    Google Scholar 

  • Ogura H & Kondo K (1998) Application of genomic in situ hybridization to the chromosome complement of the intergeneric hybrid between Leucanthemella linearis (Matsum.) Tzuvelev and Nipponanthemum nipponicum (Franch. et Maxim.) Kitamura. Chromo. Sci. 2: 91–93

    Google Scholar 

  • Ohishi K & Sakurai Y (1988) Morphological changes in Chrysanthemum derived from petal tissue. Res. Bull. Aichiken Agric. Res. Cent. 20: 278–284

    Google Scholar 

  • Oka S, Muraoka O, Abe T & Nakajima S (1996) Formation of leaf-like bodies and adventitious buds, and chimeric expression of introduced GUS gene in garland chrysanthemum tissue cultures. J. Jap. Soc. Hort. Sci. 65: 294–295

    Google Scholar 

  • Oka S, Muraoka O, Abe T & Nakajima S (1999) Adventitious bud and embryoid formation in garland chrysanthemum leaf culture. J. Jap. Soc. Hort. Sci. 68: 70–72

    Google Scholar 

  • Okamura M, Hayashi T & Miyazaki S (1984) Inhibiting effect of ammonium ion in protoplast culture of some Asteraceae plants. Plant Cell Physiol. 25: 281–286

    Google Scholar 

  • Otsuka H, Suematsu N & Toda M (1985) The culture and plant regeneration from mesophyll protoplast of chrysanthemum. Bull. Shizuoka Agric. Exp. Statn. 30: 25–33

    Google Scholar 

  • Otsuka H, Yamada H, Suematsu N & Toda M (1987) Somaclonal variation of protoplast-derived regenerates in chrysanthemum. Bull. Shizuoka Agric. Exp. Statn. 32: 53–59

    Google Scholar 

  • Paek KY, Hahn EJ & Son SH (2001) Application of bioreactors for large-scale micropropagation systems of plants. In Vitro Cell. Dev. Biol. -- Plant 37: 149–157

    Google Scholar 

  • Panfilová OF & Andrianov VN (1996) Electrostimulation of rooting of chrysanthemum green cuttings after long-term storage. Izvest. Timiryazev. Selskok. Akadem. 0: 105–113

    Google Scholar 

  • Pavingerová D, Dostál J, Bísková R & Benetka V (1994) Somatic embryogenesis and Agrobacterium-mediated transformation of chrysanthemum. Plant Sci. 97: 95–101

    Google Scholar 

  • Petty LM, Harberd NP, Carré IA, Thomas B & Jackson SD (2003) Expression of the Arabidopsis gai gene under its own promoter causes a reduction in plant height in chrysanthemum by attenuation of the gibberellin response. Plant Sci. 164: 175–182

    Google Scholar 

  • Pillai V & Zulkifli L (2000) Somaclonal variation in Chrysanthemum morifolium generated through petal cultures. J. Trop. Agric. Food Sci. 28: 115–120

    Google Scholar 

  • Prasad RN & Chaturvedi HC (1988) Effect of explants on micropropagation of Chrysanthemum morifolium. Biol. Plant. 30: 20–24

    Google Scholar 

  • Prasad RN, Sharma AK & Chaturvedi HC (1993) Clonal multiplication of Chrysanthemum morifolium ‘Otome zakura’ in long-term culture. Bangladesh J. Bot. 12: 96–102

    Google Scholar 

  • Rademaker W & de Jong J (1990) Genetic variation in adventitious shoot formation in Dendranthema grandiflora (Chrysanthemum morifolium) explants. In: de Jong J (ed) Integration of In Vitro Techniques in Ornamental Plant Breeding (pp. 34–38). CPRO-DLO, Wageningen

    Google Scholar 

  • Renou JP, Brochard P & Jalouzot R (1993) Recovery of transgenic chrysanthemum (Dendranthema grandiflora Tzvelev) after hygromycin resistance selection. Plant Sci. 89: 185–197

    Google Scholar 

  • Roberts AV & Smith EF (1990) The preparation in vitro of chrysanthemum for transplantation to soil 1. Protection of roots by cellulose plugs. Plant Cell Tiss. Org. Cult. 21: 129–132

    Google Scholar 

  • Robinson KEP & Firoozabady E (1993) Transformation of floriculture crops. Scientia Horticulturae 55: 83–99.

    Google Scholar 

  • Roest S & Bokelmann GS (1975) Vegetative propagation of Chrysanthemum morifolium Ram. in vitro. Sci. Hort. 3: 317–330

    Google Scholar 

  • Rout GR & Das P (1997) Recent trends in the biotechnology of Chrysanthemum: a critical review. Sci. Hort. 69: 239–256

    Google Scholar 

  • Rout GR, Palai SK, Pandey P & Das P (1997) Direct plant regeneration of Chrysanthemum morifolium Ramat. Deep pink: influence of explant source, age of explant, culture environment, carbohydrates, nutritional factors and hormone regime. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 67: 57–66

    Google Scholar 

  • Sakai A, Matsumoto T, Hirai D & Niino T (2000) Newly developed encapsulation-dehydration protocol for plant cryopreservation. Cryo Lett. 21: 53–62

    Google Scholar 

  • Sauvadet MA, Brochard P & Boccon-Gibco J (1990) A protoplast-to-plant system in chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura) using stem segments. Plant Cell Rep. 8: 692–695

    Article  Google Scholar 

  • Schum A (2003) Mutation breeding in ornamentals: and efficient breeding method? Acta Hort. 612: 47–60.

    Google Scholar 

  • Schum A & Preil W (1981) Regeneration of callus from Chrysanthemum morifolium mesophyll protoplast. Gartenbauwissenschaft 46: 91–93

    Google Scholar 

  • Scott MC, Caetano AG & Trigiano RN (1996) DNA amplification fingerprinting identifies closely related chrysanthemum cultivars. J. Am. Soc. Hort. Sci. 121: 1043–1048

    Google Scholar 

  • Shao HS, Li JH, Zheng XQ & Chen SC (1999) Cloning of the LFY cDNA from Arabidopsis thaliana and its transformation to Chrysanthemum morifolium. Acta Bot. Sin. 41: 268–271

    Google Scholar 

  • Sherman JM, Moyer JW & Daub ME (1998) A regeneration and Agrobacterium-mediated transformation system for genetically diverse chrysanthemum cultivars. J. Am. Soc. Hort. Sci. 123: 189–194

    Google Scholar 

  • Shinoyama H, Nomura Y, Tsuchiya T & Kazuma T (1991) Formation and plant regeneration from leaves of chrysanthemum (Dendranthema grandiflora Tzvelev.). J. Jap. Soc. Hort. Sci. 41 (Suppl.): 158

    Google Scholar 

  • Shinoyama H, Nomura Y, Tuchiya T & Kazuma T (1997) Direct embryoid formation and plant regeneration from leaves of chrysanthemum (Dendranthema grandiflora Tzvelev). Jap. J. Breed. 46: 158

    Google Scholar 

  • Shinoyama H, Komano M, Nomura Y & Nagai T (2002) Introduction of delta-endotoxin gene of Bacillus thuringiensis to chrysanthemum [Dendranthema ×grandiflorum (Ramat.) Kitamura] for insect resistance. Breed. Sci. 52: 43–50

    Google Scholar 

  • Shirasawa N, Iwai T, Nakamura S & Honkura R (2000) Transformation and transgene expression of chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura). Bull. Miyagi Prefect. Agric. Res. Centre 67: 15–20

    Google Scholar 

  • Sun JX & Li CP (1987) Effects of MS medium on root formation off shoot tips from several famed kinds of Chrysanthemum. Acta Sci. Nat. Univ. Sunyatseni 1: 121–122

    Google Scholar 

  • Sutter E & Langhans RW (1981) Abnormalities in Chrysanthemum regenerated from long-term cultures. Ann. Bot. 48: 559–568

    Google Scholar 

  • Takatsu Y, Tomotsune H, Kasumi M & Sakuma F (1998) Differences in adventitious shoot regeneration capacity among Japanese chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura) cultivars and the improved protocol for Agrobacterium-mediated genetic transformation. J. Jap. Soc. Hort. Sci. 67: 958–964

    Google Scholar 

  • Takatsu Y, Nishizawa Y, Hibi T & Akutsu K (1999) Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci. Hort. 82: 113–123

    Google Scholar 

  • Tanaka K, Kanno Y, Higuchi K & Suzuki M (1998) Somatic embryo formation and somaclonal variation in chrysanthemum. J. Jap. Soc. Hort. Sci. 67: 249

    Google Scholar 

  • Tanaka K, Kanno Y, Kudo S & Suzuki M (2000) Somatic embryogenesis and plant regeneration in chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura). Plant Cell Rep. 19: 946–953

    Google Scholar 

  • Tanimoto H & Kagi T (1990) Culture and regeneration of Chrysanthemum coronarium L. leaf protoplasts. J. Jap. Soc. Hort. Sci. 59: 252–253

    Google Scholar 

  • Teixeira da Silva JA (2002a) Polyamines in the regulation of chrysanthemum and tobacco in vitro morphogenic pathways. Prop. Ornamental Plants 2: 9–15

    Google Scholar 

  • Teixeira da Silva JA (2002b) Antibiotics in successful transformation and in the war against plant tissue culture infection. Newslett. Int. Soc. Chemother. 6: 13

    Google Scholar 

  • Teixeira da Silva JA (2003) Filter paper significantly affects the morphogenic programmes, and buffers the phytotoxic effect of antibiotics in chrysanthemum and tobacco thin cell layer in vitro culture. HortScience 38: 1403–1407

    Google Scholar 

  • Teixeira da Silva JA (2003a) Thin cell layer technology for induced response and control of rhizogenesis in chrysanthemum. Plant Growth Regul. 39: 67–76

    Google Scholar 

  • Teixeira da Silva JA (2003b) Control of chrysanthemum organo-genesis by thin cell layer technology. Asian J. Plant Sci. 2: 505–514

    Google Scholar 

  • Teixeira da Silva JA & Fukai S (2001) The impact of carbenicillin, cefotaxime and vancomycin on chrysanthemum and tobacco TCL morphogenesis and Agrobacterium growth. J. Appl. Hort. 3: 18–27

    Google Scholar 

  • Teixeira da Silva JA & Fukai S (2002a) Increasing transient and subsequent stable transgene expression in chrysanthemum (Dendranthema ×grandiflora (Ramat.) Kitamura) following optimization of particle bombardment and Agroinfection parameters. Plant Biotechnol. 19: 229–240

    Google Scholar 

  • Teixeira da Silva JA & Fukai S (2002b) Change in transgene expression following transformation of chrysanthemum by four gene introduction methods. Prop. Ornamental Plants 2: 28–37

    Google Scholar 

  • Teixeira da Silva JA, Nhut DT, Tanaka M & Fukai S (2003) The effect of antibiotics on the in vitro growth response of chrysanthemum and tobacco stem transverse thin cell layers (tTCLs). Sci. Hort. 97: 397–410

    Google Scholar 

  • Teixeira da Silva JA, Yonekura L, Kaganda J, Mookdasanit J, Nhut DT, Afach G The pharmacological importance (use, bioactivity, chemical constituents) of species within the Anthemideae (Asteraceae): a review. J. Herbs Spices Med. Plants (in press)

  • Tian XF, Liu ZQ & Zhang JF (1993) Effect of salt on rooting of Chrysanthemum and Vinca major shoots in vitro. Acta Hort. 20: 101–102

    Google Scholar 

  • Toguri T, Ogawa T, Kakitani M, Tukahara M & Yoshioka M (2003) Agrobacterium-mediated transformation of chrysanthemum (Dendranthema grandiflora) plants with a disease resistant gene (pac1). Plant Biotechnol. 20: 121–127

    Google Scholar 

  • Tosca A, Delledonne M, Furini A, Belenghi B, Fogher C & Frangi P (2000) Transformation of Korean chrysanthemum (Dendranthema zawadskii ×D. X grandiflorum) and insertion of the maize autonomous element Ac using Agrobacterium tumefaciens. J. Genet. Breed. 54: 19–24

    Google Scholar 

  • Trigiano RN, Scott MC & Caetano AG (1998) Genetic signatures from amplification profiles characterize DNA mutation in somatic and radiation-induced sports of chrysanthemum. J. Am. Soc. Hort. Sci. 123: 642–646

    Google Scholar 

  • Urban LA, Sherman JM, Moyer JW & Daub ME (1994) High frequency shoot regeneration and Agrobacterium-mediated transformation of chrysanthemum (Dendranthema grandiflora). Plant Sci. 98: 69–79

    Google Scholar 

  • van Harten AM (2002) Mutation breeding of vegetatively propagated ornamentals. In: Vainstein A (ed) Breeding for Ornamentals: Classical and Molecular Approaches (pp. 105–127). Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • van Wordragen MF, Ouwerkerk PBF & Dons HJM (1992a) Agrobacterium rhizogenes mediated induction of apparently untransformed roots and callus in chrysanthemum. Plant Cell Tiss. Org. Cult. 30: 149–157

    Google Scholar 

  • van Wordragen MF, de Jong J, Schornagel MJ & Dons HJM (1992b) Rapid screening for host-bacterium interactions in Agrobacterium-mediated gene transfer to chrysanthemum, by using the GUS-intron gene. Plant Sci. 81: 207–214

    Google Scholar 

  • Votruba R & Kodýtek R (1988) Investigation of genetic stability in Chrysanthemum morifolium ‘Blanche Poitevine Supréme’ after meristem culture. Acta Hort. 226: 311–319

    Google Scholar 

  • Wang SO & Ma SS (1978) Clonal multiplication of Chrysanthemum in vitro. J. Agric. Ass. China 32: 64–73

    Google Scholar 

  • Watanabe K (1977) Successful ovary culture and production of F1 hybrids and androgenic haploids in Japanese chrysanthemum species. J. Hered. 68: 317–320

    Google Scholar 

  • Widiastoety D (1987) Preliminary experiment on tissue culture of Chrysanthemum morifolium. Ram. Bull. Penilit. Hort. 15: 231–236

    Google Scholar 

  • Wolff K (1996) RAPD analysis of sporting and chimerism in chrysanthemum. Euphytica 89: 159–164

    Google Scholar 

  • Yepes LC, Mittak V, Pang SZ, Gonsalves C, Slightom JL & Gonsalves D (1995) Biolistic transformation of chrysanthemum with the nucleocapsid gene of tomato spotted wilt virus. Plant Cell Rep. 14: 694–698

    Google Scholar 

  • Yepes LC, Mittak V, Pang SZ, Gonsalves C, Slightom JL & Gonsalves D (1999) Agrobacterium tumefaciens versus biolistic-mediated transformation of the chrysanthemum cvs. Polaris and Golden Polaris with nucleocapsid protein genes of three Tospovirus species. Acta Hort. 482: 209–218

    Google Scholar 

  • Yi J, Wang B, Wang X, Duan C & Yang X (2003) Effect of sound stimulation on roots growth and plasmalemma H+-ATPase activity of chrysanthemum (Gerbera jamesonii). Colloids Surfaces B: Biointerfaces 27: 65–69

    Google Scholar 

  • Yiyao L, Bochu W, Xuefeng L, Chuanren D & Sakanishi A (2002) Effects of sound field on the growth of Chrysanthemum callus. Colloids Surfaces B: Biointerfaces 24: 321–326

    Google Scholar 

  • Young KJ, Jung PS, Young UB, Ho PC, Soo CY & Sheop SJ (1998) Transformation of chrysanthemum by Agrobacterium tumefaciens with three different types of vectors. J. Kor. Soc. Hort. Sci. 39: 360–366

    Google Scholar 

  • Zheng ZL, Yang Z, Jang JC & Metzger JD (2001) Modification of plant architecture in chrysanthemum by ectopic expression of the tobacco phytochrome B1 gene. J. Am. Soc. Hort. Sci. 126: 19–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira da Silva, J.A. Ornamental Chrysanthemums: Improvement by Biotechnology. Plant Cell, Tissue and Organ Culture 79, 1–18 (2004). https://doi.org/10.1023/B:TICU.0000049444.67329.b9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TICU.0000049444.67329.b9

Navigation