Skip to main content
Log in

A Novel Generic Model at Asperity Level for Dry Friction Force Dynamics

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This paper presents a theoretical model for (dry, low-velocity, wear-less) friction force dynamics based on asperity interaction considerations subject to the phenomenological mechanisms of creep/relaxation, adhesion and (elasto-plastic) deformation in their most generalized forms. The model simulates the interaction of a large population of idealized, randomly distributed asperities with arbitrarily chosen geometrical and elastic properties. Creep and adhesion are simulated by an expedient local coefficient of friction that increases with time of contact, while deformation effects are accounted for by rate-independent hysteresis losses occurring in the bulk of the material of an asperity that is breaking loose. An energy method is adopted to calculate the instantaneous, local friction force leading to better insight into the problem as well as higher numerical efficiency. The results obtained by this model show both qualitative and quantitative agreement with the known types and facets of friction force dynamic behaviour; in particular, pre-sliding quasi time-independent frictional hysteresis in the displacement, velocity weakening, slider “lift-up” effect and frictional lag, in addition to the influence of the various process parameters, all in a single formulation, such as no extant friction model could show before. Moreover, the model is still open for and capable of further refinement and elaboration so as to incorporate local inertia and viscous effects and thus to be extended to include velocity strengthening and lubricated rough contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Spikes, Tribol. Int 34(12) (2001) 789.

    Google Scholar 

  2. B. Feeny, A. Guran, N. Hinrichs and K. Popp, Appl. Mech. Rev. 51(5) 321.

  3. C.H. Holz, Nature 391 (1998) 37.

    Google Scholar 

  4. B.N.J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Heidelberg, 1998).

  5. B. Armstrong-Hèlouvry, D. Dupont and C. Canudas de Wit, Automatica 30(7) (1994) 1083.

    Google Scholar 

  6. J.R. Rice and A.L. Ruina, Trans. ASME, J. Appl. Mech. 50 (1983) 343.

    Google Scholar 

  7. J.T. Oden and J.A.C. Martins, Comp. Meth. Appl. Mech. Engng. 52 (1985) 527.

    Google Scholar 

  8. P.R. Dahl, Proceedings of 6th Annual Symp. on Incremental Motion, Control Systems and Devices (1977), p. 49.

  9. T. Prajogo, Experimental Study of Pre-rolling Friction for Motion-reversal Error Compensation on Machine Tool Drive Systems (Katholieke Universiteit Leuven, Leuven, 1999).

    Google Scholar 

  10. S. Björklund, Trans. ASME J. Tribol. 119 (1997) 726.

    Google Scholar 

  11. D.A. Hills, D. Nowell and A. Sackfield, Mechanics of Elastic Contacts (Butterworth Heinemann, 1993)

  12. B.J. Lazan, Damping of Materials and Members in Structural Mechanics (Pergamon Press, London, 1968).

    Google Scholar 

  13. D.A. Haessig,Jr. and B. Friedland, Trans. ASME, J. Dyn. Syst. Meas. Cont. (113) (1991) 354.

    Google Scholar 

  14. D.P. Hess and A. Soom, J. Tribol. (112) (1990) 147.

    Google Scholar 

  15. C. Canudas de Wit, H. Olsson, K. Aström and P. Lischinsky, IEEE Trans Auto. Cont. 40(5) (1995) 419.

    Google Scholar 

  16. J. Swevers, F. Al-Bender, C. Ganseman and T. Prajogo, IEEE Trans. Auto. Cont. 45(4) (2000) 675.

    Google Scholar 

  17. V. Lampaert, J. Swevers and F. Al-Bender, IEEE Trans. Auto. Cont. 47(4) (2002) 683.

    Google Scholar 

  18. B. Bhushan, (ed.). Handbook of Micro/Nano Tribology (2nd ed.) (CRC Press LLC, Boca Raton, 1999).

    Google Scholar 

  19. F.D. Bowden and D. Tabor, The Friction and Lubrication of Solids, Part I. (Clarendon Press, Oxford, 1950).

    Google Scholar 

  20. F.D. Bowden and D. Tabor, The Friction and Lubrication of Solids, Part II. (Clarendon Press, Oxford, 1964).

    Google Scholar 

  21. C.M. Edwards and J. Halling, J. Mech. Engng Sci. 10 (1968) 101.

    Google Scholar 

  22. G.A. Tomlinson, Philos. Mag. Ser. 7(7) (1929) 905.

    Google Scholar 

  23. M. Antler, Wear, 7 (1964) 181.

    Google Scholar 

  24. T. Baumberger, Phys. Sliding Fric. 1–16 (1996).

  25. N.V. Gitis and L. Volpe, J. Phys. D: Appl. Phys. 25 (1992) 605.

    Google Scholar 

  26. H. Czichos, Tribology, A System Approach to the Science and Technology of Friction, Lubrication and Wear (2nd ed.) (Elsevier, Amsterdam, 1979).

    Google Scholar 

  27. K.N. Smith, P. Watson and T.H. Topper, J. Mater. JMLSA 5(4) (1970) 767.

    Google Scholar 

  28. J.A. Greenwood and J.B.P. Williamson, Roy. Soc. Proc.: Series A., 295 (1966) 300.

    Google Scholar 

  29. D. Dowson, History of Tribology (2nd ed.) (Professional Engineering London, London, 1998).

    Google Scholar 

  30. P.F. Rogers and G. Boothroyd, Trans. ASME, J. Eng. Ind. (1975) 1087.

  31. S. Futami, A. Furutani and S. Yoshida, Nanotechnology 1(1) (1990) 31.

    Google Scholar 

  32. E. Rabinowicz, J. Appl. Phys. 22(11) (1951) 1373.

    Google Scholar 

  33. D.M. Tolstoi, Wear 10 (1967) 199.

    Google Scholar 

  34. R.V. Kappagantu and B.F. Feeny, Series Stability, Vibration Control Systems: Series B, 14 (1998) 167.

    Google Scholar 

  35. S. Kato, K. Yamaguchi and T. Matsubayashi, Trans ASME, J. Eng. Ind., (1974) 557.

  36. J. Kosterin, Mechanical Oscillations in Dry Friction (Soviet Academy of Science, Moscow, 1960).

    Google Scholar 

  37. B. Derjaguin, V. Push and D. Tolstoi, Sov. J. Tech. Phys. (26) (1956) 1329.

    Google Scholar 

  38. E. Rabinowicz, Proc. Phys. Soc. (71) (1958) 668.

    Google Scholar 

  39. K. Okamura, T. Matsubara, S. Noro and T. Yamane, J. Jap. Soc. Prec. Eng. (34) (1968) 31.

    Google Scholar 

  40. P. Berthoud, T. Baumberger, C. G'Shell and J.-M. Hiver, Phys. Rev. B, 59(22) (1999) 14313.

    Google Scholar 

  41. Halling, J. (ed.), Principles of Tribology (Macmillan, London, 1979).

    Google Scholar 

  42. V. Lampaert, F. Al-Bender and J. Swevers, Trib. Lett. 16 (2004) 95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Al-Bender.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Bender, F., Lampaert, V. & Swevers, J. A Novel Generic Model at Asperity Level for Dry Friction Force Dynamics. Tribology Letters 16, 81–93 (2004). https://doi.org/10.1023/B:TRIL.0000009718.60501.74

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TRIL.0000009718.60501.74

Navigation