Skip to main content
Log in

Measurement and Prediction of the Oxygen Diffusion Coefficient in Unsaturated Media, with Applications to Soil Covers

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Molecular diffusion is an important mechanism for gas transport in various natural and man-made systems. This is particularly the case with soil covers installed on acid-generating mine tailings, where oxygen availability has to be controlled. One of the most important roles of such covers is to limit gas flux, which depends on the effective diffusion coefficient D e of the cover materials. This paper presents an experimental procedure and results from oxygen diffusion tests performed on different types of materials, at various degrees of saturation. The determination of D e in the laboratory from the test data is based on analytical and numerical solutions to Fick’s laws. The ensuing values of D e are compared to values calculated from available models that relate D e to basic material properties, including porosity and degree of saturation. Statistical indicators are used to evaluate the accuracy of selected models, individually and on a comparative basis. It is shown that modified versions of the Millington–Quirk (M-Q) and Millington–Shearer (M-S) models provide D e values close to the measured data. A semi-empirical expression, ensuing from these models and measurements, is proposed as a simple means of estimating D e.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aachib, M.: 1997, ‘Ètude en laboratoire de la performance des barriÈres de recouvrement constituées de rejets miniers pour limiter le DMA’, Ph.D. Thesis, Department of Mineral Engineering, école Polytechnique de Montréal (in French).

  • Aachib, M., Aubertin, M. and Chapuis, R.P.: 1998a, ‘Essais en colonne sur des couvertures avec effets de barriÈre capillaire’, in Proceedings of 51st Canadian Geotechnical Conference, vol. 2, Edmonton, Alberta, Canada, October 1998, pp. 837–844 (in French).

  • Aachib, M., Aubertin, M. and Chapuis, R.P.: 1998b, ‘Ètude en laboratoire de la performance d’un systÈme de recouvrement multicouche sur des rejets miniers. A Vision of the Future’, CIM/CMMI/MIGA, Montréal ‘98, CD-ROM (in French).

  • Akindunni, F.F., Gillham, R.W. and Nicholson, R.V.: 1991, ‘Numerical simulation to investigate moisture-retention characteristics in the design of oxygen limiting covers for reactive tailings’, Can. Geotech. J. 28, 446–451.

    Google Scholar 

  • Astarita, G.: 1967, Mass Transfer with Chemical Reaction, Elsevier, Amsterdam.

    Google Scholar 

  • Aubertin, M., Aachib, M. and Authier, K.: 2000a, ‘Evaluation of diffusive gas flux through covers with a GCL’, Geotextiles Geomembr. 18, 215–233.

    Google Scholar 

  • Aubertin, M., Mbonimpa, M., and Dagenais, A.-M.: 2000b, ‘Nouvelles procédures d’essais de diffusion et de consommation d’oxygÈne: Applications au site LTA, Malartic, Québec’, Final Report Submitted to Golder Associates(unpublished).

  • Aubertin, M., BussiÈre, B., Monzon, M., Joanes, A.-M., Gagnon, D., Barbera, J.-M., Aachib, M., Bédard, C. Chapuis, R.P. and Bernier, L.: 1999, ‘Ètude sur les barriÈres sÈches construites à partir des résidus miniers–Phase II: Essais en place’, MEND Project 2.22.2c, CANMET, Ottawa, 331 pp. (in French).

    Google Scholar 

  • Aubertin, M., Chapuis, R.P., Aachib, M., BussiÈre, B., Ricard, J.-F. and Tremblay, L.: 1995, ‘Evaluation en laboratoire de barriÈres sÈches construites à partir de résidus miniers’, MEND Project 2.22.2a,CANMET, Ottawa, 164 pp. (in French).

    Google Scholar 

  • Aubertin, M., Chapuis, R.P., BussiÈre, B. and Aachib, M.: 1993, ‘Propriétés des résidus miniers utilisés comme matériau de recouvrement pour limiter le DMA’, in BarrÈs and Comes (eds.), Geoconfine ’93, Arnoud, Balkema 1, pp. 299–308 (in French).

    Google Scholar 

  • Batterman, S., Padmanabham, I. and Milne, P.: 1996, ‘Effective gas-phase diffusion coefficients in soils at varying water content using a one-flow solvent-based technique’, Environ. Sci. Technol. 30(3), 770–778.

    CAS  Google Scholar 

  • Bruckler, L, Bale, B.C. and Renault, P.: 1989, ‘Laboratory estimation of gas diffusion coefficient and effective porosity in Soils’, Soil Sci. 147(1), 1–10.

    Google Scholar 

  • Cabral, A., Racine, I., Burnotte, F. and Lefebvre, G.: 2000, ‘Diffusion of oxygen through a pulp and paper residue barrier’, Can. Geotech. J. 37, 201–217.

    CAS  Google Scholar 

  • Collin, M. and Rasmuson, A.: 1988, ‘A comparison of gas diffusivity models for unsaturated porous media’, Soil Sci. Soc. Am. J. 52, 1559–1565.

    Google Scholar 

  • Collin, M. and Rasmuson, A.: 1990, ‘Mathematical modeling ofwater and oxygen transport in layered soil covers for deposits of pyritic mine tailings’, in Proceedings of the GAC-MAC Annual Meeting: Acid Mine Drainage Designing for Closure, Vancouver, BC, Canada, May 1990, pp. 311–333.

  • Collin, M.: 1987, ‘Mathematical modeling of water and oxygen transport in layered soil covers for deposits of pyritic mine tailings’, Licenciate Treatise, Royal Institute of Technology, Department of Chemical Engineering, S-10044 Stockholm, Sweden.

    Google Scholar 

  • Crank, J.: 1975, The Mathematics of Diffusion, 2nd ed. Clarendon Press, Oxford, United Kingdom.

    Google Scholar 

  • Currie, J. A.: 1961, ‘Gaseous diffusion in porous media. Part 3: Wet granular materials’, Br. J. Appl. Phys. 12, 275–281.

    CAS  Google Scholar 

  • Draper, N.R. and Smith, H.: 1998, Applied Regression Analysis, 3rd edn., Wiley, New York.

    Google Scholar 

  • Dye, R.F. and Dallavalle, J.M.: 1958, ‘Diffusion of gases in porous media’, Ind. Eng. Chem. 50, 1195–1200.

    CAS  Google Scholar 

  • Dziejowski, J.E., Rimmer, A. and Steenhuis, T.: 1997, ‘Preferential movement of oxygen in soils?’, Soil Sci. Soc. Am. J. 61, 1607–1610.

    CAS  Google Scholar 

  • Elberling, B. and Nicholson, R.V.: 1996, ‘Field determination of sulphide oxydation rates in mine tailings’, Water Resources Res. 32(6), 1773–1784.

    CAS  Google Scholar 

  • Elberling, B., Nicholson, R.V., Reardon, E.J. and Tibble, P.: 1994, ‘Evaluation of sulphide oxidation rates: A laboratory study comparing oxygen fluxes and rates of oxidation product release’, Can. Geotech. J. 31, 375–383.

    CAS  Google Scholar 

  • Flegg, P.B.: 1953, ‘The effect of aggregation on diffusion of gases and vapors through soils’, J. Sci. Food Agric. 4, 104–108.

    CAS  Google Scholar 

  • Fredlund, D.G. and Rahardjo, R.: 1993, Soil Mechanics for Unsaturated Soils, Wiley, New York.

    Google Scholar 

  • Glauz, R.D. and Rolston, D.E.: 1989, ‘Optimal design of two-chamber gas diffusion cell’, Soil Sci. Soc. Am. J. 53, 1619–1624.

    Google Scholar 

  • Hers, I., Zapf-Gilje, R., Li. L. and Atwater, J.: 2000, ‘Measurement of in situgas-phase diffusion coefficients’, Environ. Technol. 21, 631–640.

    CAS  Google Scholar 

  • Hillel, D.: 1998, Environmental Soil Physics, Academic Press, San Diego.

    Google Scholar 

  • Jellick, G.J. and Schnabel, R.R.: 1986, ‘Evaluation of a field method for determining the gas diffusion coefficient in soils’, Soil Sci. Soc. Am. J. 50, 18–23.

    CAS  Google Scholar 

  • Jin, Y. and Jury, W.A.: 1996, ‘Characterising the dependence of gas diffusion coefficient on soil properties’, Soil Sci. Soc. Am. J. 60, 66–71.

    CAS  Google Scholar 

  • Kalita, P.K.: 1999, ‘Transient finite element method solution of oxygen diffusion in soil’, Ecol. Model. 118, 227–236.

    CAS  Google Scholar 

  • Lai, S.H., Tiedje, J.M. and Erickson, A.E.: 1976, ‘In-situmeasurement of gas diffusion coefficient in soils’, Soil Sci. Soc. Am. J. 40, 3–6.

    CAS  Google Scholar 

  • Lin-Shelp, M. and Yanful, E.K.: 2000, ‘Oxygen diffusion coefficient of soils at high degrees of saturation’, ASTM Geotech. Test. J. GTJODJ 23(1), 36–44.

    Google Scholar 

  • Marshall, T.J.: 1959, ‘The diffusion of gases through porous media’, J. Soil Sci. 10, 79–82.

    Google Scholar 

  • Mbonimpa, M., Aubertin, M., Aachib, M. and BussiÈre, B.: 2003, ‘Diffusion and consumption of oxygen in unsaturated cover materials’, Can. Geotech. J. 40, 916–932.

    CAS  Google Scholar 

  • Mbonimpa, M., Aubertin, M., BussiÈre, B. and Julien, M.: 2000, ‘Procédures et interprétation des essais de diffusion et de consommation d’oxygÈne en laboratoire et in situ’, NEDEM 2000, Sherbrooke, Quebec, Canada, Octobre 2000, Session 6, pp. 17–22 (in French).

  • Mbonimpa, M., Aubertin, M., Dagenais, A.-M., BussiÈre, B., Julien, M. and Kissiova, M.: 2002, ‘Interpretation of field tests to determine the oxygen diffusion and reaction rate coefficients of tailings and soil covers’, in Proceedings of the 55th Canadian Geotechnical and Joint IAH-CNC and CGS Groundwater Speciality Conferences, Niagara Falls, October 2002, pp. 147–154.

  • MEND Secretariat CANMET: 2001, Manual Report 5.4.2, vol. 1–Summary, vol. 2–Sampling and Analysis, vol. 3–Prediction, vol. 4–Prevention and Control, vol. 5–Treatment, vol. 6–Monitoring.

  • Mihelcic, J.R.: 1998, Fundamentals of Environmental Engineering, Wiley, New York.

    Google Scholar 

  • Millington, R.J. and Quirk, J.P.: 1961, ‘Permeability of porous solids’, Trans. Faraday Soc. 57, 1200–1207.

    CAS  Google Scholar 

  • Millington, R.J. and Shearer, R.C.: 1971, ‘Diffusion in aggregated porous media’, Soil Sci. 111, 372–378.

    CAS  Google Scholar 

  • Moldrup, P., Olesen, T., Gamst, J., Schjønning, P., Yamaguchi, T. and Rolston, D.E.: 2000a, ‘Predicting the gas diffusion coefficient in repacked soil: Water-induced linear reduction model’, Soil Sci. Soc. Am. J. 64(5), 1588–1594.

    CAS  Google Scholar 

  • Moldrup, P., Olesen, T., Komatsu, T., Schjønning, P. and Rolston, D.E.: 2001, ‘Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases’, Soil Sci. Soc Am. J. 65(3), 613–623.

    CAS  Google Scholar 

  • Moldrup, P., Olesen, T., Schjønning, P., Yamaguchi, T. and Rolston, D.E.: 2000b, ‘Predicting the gas diffusion coefficient in undisturbed soil from soil water characteristics’, Soil Sci. Soc. Am. J. 64(5), 94–100.

    CAS  Google Scholar 

  • Nicholson, R.V., Gillham, R.W., Cherry, J.A. and Reardon, E.J.: 1989, ‘Reduction of acid generation in mine tailings through the use of moisture-retaining cover layers as oxygen barriers’, Can. Geotech. J. 26,1–8.

    CAS  Google Scholar 

  • Olesen, T., Moldrup, P., Henriksen, K. and Petersen, W.: 1996, ‘Modeling diffusion and reaction in soils: IV. New models for predicting ion diffusivity’, Soil Sci. 161, 633–645.

    CAS  Google Scholar 

  • Papendick, R.I. and Runkles, J.R.: 1965, ‘Transient-state oxygen diffusion in soil: I. The case when rate of oxygen consumption is constant’, Soil Sci. 100, 251–261.

    Google Scholar 

  • Penman, H.L.: 1940, ‘Gas and vapor movements in the soil: II. The diffusion of carbon dioxide through porous solids’, J. Agric. Sci. 30, 570–581.

    CAS  Google Scholar 

  • Rasmuson, A. and Erickson, J.-C.: 1986, ‘On the physico-chemical basis for the capillary barrier concept’, Nordic Hydrol. 18, 281–292

    Google Scholar 

  • Rawlings, J.O., Pantula, S.G. and Dickey, D.A.: 1998, Applied Regression Analysis, 2nd edn. Springer-Verlag, New York.

    Google Scholar 

  • Reardon, E.J. and Moddle, P.M.: 1985, ‘Gas diffusion coefficient measurements on uranium mill tailings: Implications to cover layer design’, Uranium 2, 111–131.

    CAS  Google Scholar 

  • Reible, D.D. and Shair, F.H.: 1982, ‘A technique for the measurement of gaseous diffusion in porous media’, J. Soil Sci. 33, 165–174.

    CAS  Google Scholar 

  • Renault, P. and Sierra, J.: 1994, ‘Modeling oxygen diffusion in aggregated soils: II. Anaerobiosis in topsoil layers’, Soil Sci. Soc. Am. J. 58, 1023–1030.

    CAS  Google Scholar 

  • Renault, P. and Stengel, P.: 1994, ‘Modeling oxygen diffusion in aggregated soils: I. Anaerobiosis inside the aggregates’, Soil Sci. Soc. Am. J. 58, 1017–1023.

    CAS  Google Scholar 

  • Ricard, J.F., Aubertin, M., Pelletier, P., Poirier, P. and McMullen, J.: 1999, ‘Performance of a dry cover made of tailings for the closure of Les Terrains AurifÈres site, Malartic, Québec, Canada’, in Proceedings Sudbury’99 Mining and Environment, Sudbury, Ontario, Canada, September 1999, vol. 2, pp. 155–164.

    Google Scholar 

  • Rolston, D.E., Glauz, R.D., Grundmann, G.L. and Louie, D.T.: 1991, ‘Evaluation of an in situ method for measurement of gas diffusivity in surface soils’, Soil Sci. Soc. Am. J. 55, 1536–1542.

    Google Scholar 

  • Rowe, R.K.: 1987, ‘Polluant transport through barriers’, in R.D. Woods (ed.), Geotechnical Practice for Waste Disposal, American Society of Civil Engineering, Special Publication No. 13, pp. 159–181.

  • Rowe, R.K., Booker, J.R. and Fraser, M.J.: 1994, POLLUTEv6 and POLLUTE-GUI User’s Guide, GAEA Environmental Engineering Ltd., London, Ontario.

    Google Scholar 

  • Sallam, A., Jury, W.A. and Letey, J.: 1984, ‘Measurement of gas diffusion coefficient under relatively low air filled porosity’, Soil Sci. Soc. Am. J. 48, 3–6.

    Google Scholar 

  • Shackelford, C.D.: 1991, ‘Laboratory diffusion testing for waste disposal. A review’, J. Contam. Hydrol. 7, 177–217.

    CAS  Google Scholar 

  • Shair, F.H. and Cohen, D.S.: 1969, ‘Transient ordinary and forced diffusion in a tube connecting stirred-tank end bulbs of finite size’, Chem. Eng. Sci. 24, 39–48.

    CAS  Google Scholar 

  • Talbot, A.:1979, ‘The accurate numerical integration of laplace transforms’, J. Inst. Math. Its Appl. 23, 97–120.

    Google Scholar 

  • Tans, P.P.: 1998, ‘Oxygen isotopic equilibrium between carbon dioxide and water in soils’, Tellus-Series B-Chem. Phys. Meteorol. 50(2), 163–178.

    Google Scholar 

  • Taylor, S.A.: 1949, ‘Oxygen diffusion in porous media as a measure of soil aeration’, Soil Sci. Soc. Am. Proc. 14, 55–61.

    Google Scholar 

  • The MathWorks Inc.: 1992, The Student Edition of MATLAB(r). Student User’s Guide. Prentice Hall, Englewoodcliffs, NJ 07632.

    Google Scholar 

  • Tieje, O. and Hennings, V.: 1996, ‘Accuracy of the saturated hydraulic conductivity prediction by Pedotransfer Functions Compared to the Variability within FAO Textural Classes’, Geoderma 69, 71–84.

    Google Scholar 

  • Troeh, F.R., Jabero, J.D. and Kirkham, D.: 1982, ‘Gaseous diffusion equations for porous materials’, Geoderma 27, 239–253.

    Google Scholar 

  • VanBavel, C.H.M.: 1952, ‘Gaseous diffusion and porosity in porous media’, Soil Science 73, 91–104.

    CAS  Google Scholar 

  • Van Brakel, J. and Heertjes, P.M.: 1974, ‘Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor’, Int. J. Heat Mass Transfer 17, 1093–1103.

    Google Scholar 

  • Weerts, A. H., Freijer, J.I. and Bouten, W.: 2000, ‘Modeling the gas diffusion coefficient in analogy to electrical conductivity using a capillary model’, Soil Sci. Soc. Am. J. 64, 527–532.

    CAS  Google Scholar 

  • Wilson, G.W.: 1995, ‘Assessment of protective covers and dump behavior’, in Proceedings of the 2 nd Australia Acid Mine Drainage Workshop, Australia, March 1995.

  • Yanful, E.K.: 1993, ‘Oxygen diffusion through soil covers on sulphidic mine tailings’, J. Geotechn. Eng., ASCE 119(8), 1207–1228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aachib, M., Mbonimpa, M. & Aubertin, M. Measurement and Prediction of the Oxygen Diffusion Coefficient in Unsaturated Media, with Applications to Soil Covers. Water Air Soil Pollut 156, 163–193 (2004). https://doi.org/10.1023/B:WATE.0000036803.84061.e5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:WATE.0000036803.84061.e5

Navigation