Skip to main content
Log in

Rhamnolipid Foam Enhanced Remediation of Cadmium and Nickel Contaminated Soil

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Column experiments were conducted to evaluate the feasibility of using a rhamnolipid foam to remove heavy metals (Cd and Ni) from a sandy soil contaminated with Cd (1706 ppm) and Ni (2010 ppm). Best results were obtained from the foam generated by a 0.5% rhamnolipid solution with an initial pH value of 10.0 after flushing with 20-pore-volume of solution. These conditions removed 73.2% of the Cd and 68.1% of the Ni. Removal efficiencies by foam generated by a chemical surfactant, Triton X-100, were investigated as a comparison. It removed 65.5% of the Cd and 57.3% of the Ni under the same conditions. After a 20-pore-volume liquid solution flushing, 0.5% rhamnolipid (initial pH 10.0) without foam generation removed 61.7% of the Cd and 51.0% of the Ni, whereas 0.5% Triton X-100 (initial pH 10.0) removed 52.8% of the Cd and 45.2% of the Ni. Distilled water with adjusted pH only was also used to flush through the contaminated soil column as a control. It removed 17.8% of the Cd and 18.7% of the Ni. This study shows that rhamnolipid foam technology can be an effective means for the remediation of cadmium and nickel contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association (APHA), American Water Works Association (AWWA) and Water Pollution Control Federation (WPCF): 1995, ‘Standard Methods for the Examination of Water and Wastewater’, 17th edn., APHA, Washington, DC.

    Google Scholar 

  • Bernard, G. G. and Holm, L.W.: 1964, ‘Effect of foam on permeability of porous media to gas’, Soc. Pet. Eng. J. 19, 267-274.

    Google Scholar 

  • Bernard, G. G., Holm, L. W. and Jacobs, W. L.: 1965, ‘Effect of foam on trapped gas saturation and on permeability of porous media to water’, Soc. Pet. Eng. J. 5, 295-300.

    Google Scholar 

  • Chowdiah, P., Misra, B. R., Kilbane, J. J.,II, Srivastava, V. J. and Hayes, T. D.: 1998, ‘Foam propagation through soils for enhanced in-situremediation’, J. Hazard. Mat. 62, 265-280.

    Article  Google Scholar 

  • Doong, R. A., Wu, Y. W. and Lei, W. G.: 1998, ‘Surfactant enhanced remediation of cadmium contaminated soils’, Wat. Sci. Technol. 37(8), 65-71.

    Article  Google Scholar 

  • Evanko, C. R. and Dzombak, A. D.: 1997, ‘Remediation of Metals-Contaminated Soils and Groundwater’, TE-97-01, Ground-Water Remediation Technologies Analysis Center.

  • Fountain, J. C., Starr, R. S., Middleton, T., Beikirch, M., Taylor, C. and Hodge, D. S.: 1996, ‘A controlled field test of surfactant enhanced aquifer remediation’, Ground Wat. 34(5), 910-916.

    Google Scholar 

  • Gillman, G. P. and Sumpter, E. A.: 1986, ‘Modification to the compulsive exchange method for measuring exchange characteristics of soils’, Aust. J. Soil Res. 24, 61-66.

    Google Scholar 

  • JENEIL Biosurfactant Co., LLC.: 2001, ‘Material safety data sheet for JBR425’, Retrived from http://www.biosurfactant.com/downloads/jbr425msds.pdf.

  • Jeong, S. W., Corapcioglu, M. Y. and Roosevelt, S. E.: 2000, ‘Micromodel study of surfactant foam remediation of residual trichlorothylene’, Environ. Sci. Technol. 34, 3456-3461.

    Article  Google Scholar 

  • Kilbane, J. J., II, Chowdiah, P., Kayser, K. J., Misra, B., Jackowski, K. A., Srivastava, V. J., Sethu, G. N., Nikolov, A. D., Wasan, D. T. and Hayes, T. D.: 1997, ‘Remediation of contaminated soils using foams’, Land Contamin. Reclam. 5, 41-54.

    Google Scholar 

  • Lin, F. F. J., Besserer, G. L. and Pitts, M. J.: 1987, ‘Laboratory evaluation of crosslinked polymer and alkailine-polymer-surfactant flood’, J. Can. Petrol. Technol. 26, 54-65.

    Google Scholar 

  • Miller, R. M.: 1995, ‘Biosurfactant-facilitated remediation of metal-contaminated soils’, Environ. Health Perspect 103(suppl 1), 59-61.

    Google Scholar 

  • Mulligan, C. N., Yong, R. N. and Gibbs, B. F.: 1999, ‘On the use of biosurfactants for the removal of heavy metals from oil-contaminated soil’, Environ. Prog. 18(1), 50-54.

    Article  Google Scholar 

  • Mulligan, C. N, Yong, R. N. and Gibbs, B. F.: 2001a, ‘Heavy metal removal from sediments by biosurfactants’, J. Hazard. Mat. 85, 111-125.

    Article  Google Scholar 

  • Mulligan, C. N., Yong, R. N. and Gibbs, B. F.: 2001b, ‘An evaluation of technologies for the heavy metal remediation of dredged sediments’, J. Hazard. Mat. 85, 145-163.

    Article  Google Scholar 

  • Mulligan, C. N. and Eftekhari, F.: 2003, ‘Remediation with surfactant foam of pcp-contaminated soil’, Eng. Geol. 70, 269-279.

    Article  Google Scholar 

  • Nash, J. H.: 1987, Field Studies of In Situ Soil Washing, Environmental Protection Agency, Cincinnati, Ohio, Hazardous Waste Engineering Research Laboratory. Report Number PA/600/2-87/110, PB88-146808.

    Google Scholar 

  • Oolman, T., Godard, S. T., Pope, G. A., Jin, M. and Kirchner, K.: 1995, ‘DNAPL flow behavior in a contaminated aquifer: evaluation of field data’, Ground Wat. Monit. Remed. 15(4), 125-137.

    Google Scholar 

  • Peters, R.W., Enzien, W. V., Bouillard, J. X., Frank, J. R., Srivastava, V. J., Kilbane II, J. J. and Hayes, T. D.: 1994, ‘Nonaqueous-phase-liquids-contaminated soil/groundwater remediation using foams in the in-situremediation’, in G.W. Gee and N.R Wing (eds), Scientific Basis for Current and Future Ttechnologies, Battelle Press, Columbus, OH, pp. 1067-1087.

    Google Scholar 

  • Rosen, M. J.: 1979, Surfactants and Interfacial Phenomena, Wiley, New York.

    Google Scholar 

  • Rothmel, R. K., Peters, R.W., Martin, E. St. and Deflaun, M. F.: 1998, ‘Surfactant foam/bioaugmentation technology for in situtreatment of TCE-DNAPLs’, Environ. Sci. Technol. 32, 1667-1675.

    Article  Google Scholar 

  • Roundhill, D. M.: 2001, ‘Extraction of Metals from Soil and Waters’, John P.F, Jr. (ed.), Modern Inorganic Chemistry, Kluwer Academic/Plenum Publishers, Boston, MA.

    Google Scholar 

  • Selim, H. M. and Michael, C. A.: 1996, Reactivity and Transport of Heavy Metals in Soils, Lewis Publishers, Boca Raton, Florida, U.S.A.

    Google Scholar 

  • Sigma: 1993, ‘Sigma Product Information Sheet: Triton X-100’, Retrived from http://www.sigmaaldrich.com/sigma/prodata/t6878.htm.

  • Torrens, J. L., Herman, D. C. and Miller-Maier, R. M.: 1998, ‘Biosurfactant (rhamnolipid) sorption and the impact on rhamnolipid-facilitated removal of cadmium from various soils under saturated flow conditions’, Environ. Sci. Technol. 32(6), 776-781.

    Article  Google Scholar 

  • Tsujii, K.: 1998, Surface Activity, Principles, Phenomena, and Applications. Academic Press, Boston, MA.

    Google Scholar 

  • Vignon, B. W. and Rubin, A. J.: 1989, ‘Practical considerations in the surfactant-aided mobilization of contaminants in aquifers’, J. Water Pollut. Control 61, 1233-1240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine N. Mulligan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Mulligan, C.N. Rhamnolipid Foam Enhanced Remediation of Cadmium and Nickel Contaminated Soil. Water, Air, & Soil Pollution 157, 315–330 (2004). https://doi.org/10.1023/B:WATE.0000038904.91977.f0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:WATE.0000038904.91977.f0

Navigation