Skip to main content
Log in

Applications of transposition mutagenesis in antibiotic producing streptomycetes

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Several transposons have been developed from the streptomycete insertion sequence IS493. They have broad host specificity in Streptomyces species and insert relatively randomly into a consensus target sequence of gNCaNTgNNy. Collectively, they have specialized features that facilitate the following: cloning of DNA flanking insertions; physical mapping of insertions; construction of highly stable mutants; and efficient construction of mutant libraries. All of the transposons can be introduced into streptomycetes by conjugation from E. coli, and can be delivered by curing the temperature sensitive delivery plasmid. Tn5099 was used to physically map genes involved in daptomycin and red pigment production in Streptomyces roseosporus, and to clone daptomycin biosynthetic genes. Tn5099 was also used in Streptomyces fradiae to identify and clone a neutral genomic site for the insertion of a second copy of the tylF gene. Recombinants containing two copies of the tylF gene carried out the no rmally rate limiting conversion of macrocin to tylosin very efficiently, thus causing substantial increases in tylosin yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asturias JA, Martin JF & Liras P (1994) Biosynthesis and phosphate control of candicidin by Streptomyces acrimycini JI2236: effect of amplification of the pabAB gene. J. Ind. Microbiol. 13: 183–189

    Google Scholar 

  • Baltz RH (1978) Genetic recombination in Streptomyces fradiae by protoplast fusion and cell regeneration. J. Gen. Microbiol. 107: 93–102

    Google Scholar 

  • — (1980) Genetic recombination by protoplast fusion in Streptomyces. Dev. Ind. Microbiol. 21: 43–54

    Google Scholar 

  • — (1982) Genetics and biochemistry of tylosin production: a model for genetic engineering in antibiotic-producing Streptomyces. In: Hollaender A (Ed) Genetic Engineering of Microorganisms for Chemicals (pp 431–444) Plenum Publishing Corp., New York

    Google Scholar 

  • — (1994) Gene expression in recombinant Streptomyces. In: Smith A (Ed) Recombinant Microorganisms: Gene Expression (pp 309–381) Marcel Dekker, New York

    Google Scholar 

  • — (1996) Molecular genetic approaches to yield improvement in actinomycetes. In: Strohl WR (Ed) Biotechnology of Industrial Antibiotics. Marcel Dekker, New York (in press)

    Google Scholar 

  • Baltz RH, Hahn DR, McHenney MA & Solenberg PJ (1992) Transposition of Tn5096 and related transposons in Streptomyces species. Gene 115: 61–65

    Google Scholar 

  • Baltz RH, McHenney MA & Solenberg PJ (1993) Properties of transposons derived from IS493 and applications in streptomycetes. In: Baltz RH, Hegeman GD & Skatrud PL (Eds) Industrial Microorganisms: Basic and Applied Molecular Genetics (pp 51–56) American Society for Microbiology, Washington, DC

    Google Scholar 

  • Baltz RH & Seno ET (1981) Properties of Streptomyces fradiae mutants blocked in biosynthesis of the macrolide antibiotic tylosin. Antimicrob. Agents Chemother. 20: 214–225

    Google Scholar 

  • — (1988) Genetics of Streptomyces fradiae and tylosin biosynthesis. Annu. Rev. Microbiol. 42: 547–574

    Google Scholar 

  • Baltz RH, Seno ET, Stonesifer J & Wild GM (1983) Biosynthesis of the macrolide antibiotic tylosin: A preferred pathway from tylactone to tylosin. J. Antibiot. 36: 131–141

    Google Scholar 

  • Beckman RJ, Cox K & Seno ET (1989) A cluster of tylosin biosynthetic genes is interrupted by a structurally unstable segment containing four repeated sequences. In: Hershberger CL, Queener SW & Hegeman G (Eds) Genetics and Molecular Biology of Industrial Microorganisms (pp 176–186) American Society for Microbiology, Washington, DC

    Google Scholar 

  • Berg CM, Berg DE & Groisman EA (1989) Transposable elements and the genetic engineering of bacteria. In: Berg DE & Howe MM (Eds) Mobile DNA (pp 879–925) American Society for Microbiology, Washington, DC

    Google Scholar 

  • Butler MS, Friend EJ, Hunter IS, Kaczmarek FS, Sugden DA & Warren M (1989) Molecular cloning of resistance genes and architecture of a linked gene cluster involved in biosynthesis of oxytetracycline by Streptomyces rimosus. Mol. Gen. Genet. 215: 231–238

    Google Scholar 

  • Cox KL, Fishman SE, Larson JL, Stanzak R, Reynolds PA, Yeh W-K, Van Frank RM, Birmingham VA, Hershberger CL & Seno ET (1986) The use of recombinant DNA techniques to study tylosin biosynthesis and resistance in Streptomyces fradiae. J. Nat. Products 49: 971–980

    Google Scholar 

  • Cox KL & Seno ET (1990) Maintenance of cloned tylosin biosynthetic genes in Streptomyces fradiae on freely-replicating and integrative plasmid vectors. J. Cell. Biochem. Suppl. 14A: 93.

    Google Scholar 

  • Debono M, Abbott BJ, Malloy RM, Fukuda DS, Hunt AH, Daupert VM, Counter FT, Ott JL, Carrell CB, Howard LC, Boeck LD & Hamill RL (1988) Enzymatic and chemical modifications of lipopeptide antibiotic A21978C: the synthesis and evaluation of daptomycin (LY146032). J. Antibiot. 41: 1093–1105

    Google Scholar 

  • Debono M, Barnhart M, Carrell CB, Hoffman JA, Occolowitz JL, Abbott BJ, Fukuda D & Hamill RL (1987) A21978C, a complex of new acidic peptide antibiotics: isolation, chemistry, and mass spectral structure elucidation. J. Antibiot. 40: 761–777

    Google Scholar 

  • Decker H, Summers RG & Hutchinson CR (1994) Overproduction of the acyl carrier protein component of a type II polyketide synthase stimulates production of tetracenomycin biosynthetic intermediates in Streptomyces glaucescens. J. Antibiot. 47: 54–63

    Google Scholar 

  • Fishman SE, Cox K, Larson JL, Reynolds PA, Seno ET, Yeh W-K, Van Frank R & Hershberger CL (1987) Cloning genes for the biosynthesis of a macrolide antibiotic. Proc. Natl. Acad. Sci. USA 84: 8248–8252

    Google Scholar 

  • Hershberger CL, Arnold B, Larson J, Skatrud P, Reynolds P, Szoke P, Rosteck PR Jr, Swartling J & McGilvray D (1989) Role of giant linear plasmids in the biosynthesis of macrolide and polyketide antibiotics. In: Hershberger CL, Queener SW & Hegeman G (Eds) Genetics and Molecular Biology of Industrial Microorganisms (pp 147–155) American Society for Microbiology, Washington, DC

    Google Scholar 

  • Ingram C, Brawner M, Youngman P & Westpheling J (1989) xylE functions as an efficient reporter gene in Streptomyces spp: use for the study of galP1, a catabolite-controlled promoter. J. Bacteriol. 171: 6617–6624

    Google Scholar 

  • Kaster KR, Burgett SG, Rao RN & Ingolia TD (1983) Analysis of a bacterial hygromycin B resistance gene by transcriptional and translational fusions and by DNA sequencing. Nucleic Acids Res. 11: 6895–6911

    Google Scholar 

  • Kelemen GH, Zalacain M, Culebras E, Seno ET & Cundliffe E (1994) Transcriptional attenuation control of the tylosin-resistance gene tlrA in Streptomyces fradiae. Mol. Microbiol. 14: 833–842

    Google Scholar 

  • Kleckner N, Roth J & Botstein D (1977) Genetic engineering in vivo using translocatable drug-resistance elements. J. Mol. Biol. 116: 125–159

    Google Scholar 

  • Matsushima P & Baltz RH (1985) Efficient plasmid transformation of Streptomyces ambofaciens and Streptomyces fradiae protoplasts. J. Bacteriol. 163: 180–185

    Google Scholar 

  • McHenney MA & Baltz RH (1991) Transposition of Tn5096 from a temperature sensitive transducible plasmid in Streptomyces spp. J. Bacteriol. 173: 5578–5581

    Google Scholar 

  • — (1996) Gene transfer and transposition mutagenesis in Streptomyces roseosporus: mapping of insertions that influence daptomycin or pigment production Microbiology (in press)

  • Merson-Davies LA & Cundliffe E (1994) Analysis of five tylosin biosynthetic genes from the tylIBA region of the Streptomyces fradiae genome. Mol. Microbiol. 13: 349–355

    Google Scholar 

  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Seno ET & Baltz RH (1981) Properties of S-adenosyl-Lmethionine:macrocin O-methyltransferase in extracts of Streptomyces fradiae strains which produce normal or elevated levels of tylosin and in mutants blocked in specific O-methylations. Antimicrob. Agents Chemother. 20: 370–377

    Google Scholar 

  • — (1982) S-adenosyl-L-methionine:macrocin O-methyltransferase activities in a series of Streptomyces fradiae mutants that produce different levels of the macrolide antibiotic tylosin. Antimicrob. Agents Chemother. 21: 758–763

    Google Scholar 

  • Solenberg PJ & Baltz RH (1991) Transposition of Tn5096 and other IS493 derivatives in Streptomyces griseofuscus. J. Bacteriol. 173: 1096–1104

    Google Scholar 

  • — (1994) Hypertransposing derivatives of the streptomycete insertion sequence IS493. Gene 147: 47–54

    Google Scholar 

  • Solenberg PJ & Burgett SG (1989) Method for selection of transposable DNA and characterization of a new insertion sequence, IS493, from Streptomyces lividans. J. Bacteriol. 171: 4807–4813

    Google Scholar 

  • Solenberg PJ, Cantwell CA, Tietz AJ, McGilvray D, Queener SW & Baltz RH (1996) Transposition mutagenesis in Streptomyces fradiae: identification of a neutral site for the stable insertion of DNA by transposon exchange. Gene 168: 67–72

    Google Scholar 

  • Thomas DI, Cove JH, Baumberg S, Jones CA & Rudd BAM (1991) Plasmid effects on secondary metabolite production by a streptomycete synthesizing an anthelmintic macrolide. J. Gen. Microbiol. 137: 2331–2337

    Google Scholar 

  • Yanisch-Perron C, Vieira J & Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–199

    Google Scholar 

  • Zukowski MM, Gaffney DF, Speck D, Kauffman M, Findeli A, Wisecup A & Lecocq J-P (1983) Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc. Nat. Acad. Sci. USA 80: 1101–1105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baltz, R.H., McHenney, M.A., Cantwell, C.A. et al. Applications of transposition mutagenesis in antibiotic producing streptomycetes. Antonie Van Leeuwenhoek 71, 179–187 (1997). https://doi.org/10.1023/A:1000177808686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000177808686

Navigation