Skip to main content
Log in

Microvessel density and vascular basement membrane immunostaining in tumours of the breast

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

There is a well established correlation between increased breast tumour microvessel density (MVD) and reduced prognosis. The aims of this study were to investigate (1) if MVD is elevated in regions other than `hotspots' of node positive versus node negative breast tumours, and (2) to quantitate the percentage of vessels without vascular basement membrane (VBM) components in high vascular density (HVD) and average vascular density (AVD) regions of node positive and node negative breast tumours. Serial sections were immunostained for CD31 and double-stained for CD31 and collagen IV (CollIV), laminin (LAM) or heparan sulphate proteoglycan (HSPG). Microvessel counts were obtained from HVD and AVD regions and the number of VBM positive vessels were expressed as a percentage of total CD31 positive vessels. MVD was significantly higher in both the HVD and AVD regions of node positive compared with node negative breast tumours (t-test; P < 0.03). The average percent vessels positive for CollIV, LAM or HSPG ranged from 18%–45% and did not differ between node positive and negative breast tumours (t-test; P > 0.05). No differences were observed in VBM immunostaining between regions of HVD and AVD (t-test; P > 0.05). These results demonstrate that vascular density is elevated throughout node positive breast tumours, rather than just in `hotspots', and show that there is no apparent difference in the percentage of VBM-naked vessels in node positive versus node negative breast tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sainsbury R. Breast cancer. Postgrad Med J 1996; 72: 663–6.

    Article  PubMed  CAS  Google Scholar 

  2. Carter CL, Allen C, Henson DE. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 1989; 63: 181–7.

    Article  PubMed  CAS  Google Scholar 

  3. Ravdin PM, De Laurentiis M, Vendely T et al. Prediction of axillary lymph node status in breast cancer patients by use of prognostic indicators. J Natl Cancer Inst 1994; 86: 1771–5.

    PubMed  CAS  Google Scholar 

  4. Gasparini G, Barbareschi M, Boracchi P et al. 67-kDa laminin-receptor expression adds prognostic information to intra-tumoral microvessel density in node-negative breast cancer. Int J Cancer 1995; 60: 604–10.

    PubMed  CAS  Google Scholar 

  5. Horak ER, Leek R, Klenk N. Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 1992; 340: 1120–4.

    Article  PubMed  CAS  Google Scholar 

  6. Visscher DW, Smilanetz S, Drozdowicz S et al. Prognostic significance of image morphometric microvessel enumeration in breast carcinoma. Anal Quant Cytol Histol 1993; 15: 88–92.

    PubMed  CAS  Google Scholar 

  7. Weidner N, Folkman J, Pozza F et al. Tumor angiogenesis: A new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 1992; 84: 1875–87.

    PubMed  CAS  Google Scholar 

  8. Axelsson K, Ljung BE, Moore DH et al. Tumor angiogenesis as a prognostic assay for invasive ductal breast carcinoma. J Natl Cancer Inst 1995; 87: 997–1008.

    PubMed  CAS  Google Scholar 

  9. Hall NR, Fish DE, Hunt N. Is the relationship between angiogenesis and metastasis in breast cancer real? Surg Oncol 1992; 1: 223–9.

    Article  PubMed  CAS  Google Scholar 

  10. Van Hoef MEHM, Knox WF, Dhesi SS et al. Assessment of tumour vasculature as a prognostic factor in lymph node negative invasive breast cancer. Eur J Cancer 1993; 29A(8): 1141–5.

    PubMed  CAS  Google Scholar 

  11. Horak ER, Harris AL, Stuart N et al. Angiogenesis in breast cancer. Regulation, prognostic aspects, and implications for novel treatment strategies. Ann NY Acad Sci 1993; 698: 71–84.

    PubMed  CAS  Google Scholar 

  12. Visscher DW, Lawrence WD, Boman S. Angiogenesis in breast carcinoma — clinicopathologic relevance and potential use as a quantifiable surrogate endpoint biomarker. J Cell Biochem Suppl 1994; 19: 146–52.

    PubMed  CAS  Google Scholar 

  13. Weidner N, Semple JP, Welch WR et al. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 1991; 324: 1–8.

    Article  PubMed  CAS  Google Scholar 

  14. Yoshiji H, Gomez DE, Shibuya M et al. Expression of vascular endothelial growth factor, its receptor, and other angiogenic factors in human breast cancer. Cancer Res 1996; 56: 2013–6.

    PubMed  CAS  Google Scholar 

  15. Kranz A, Mattfeldt T, Waltenberger J. Molecular mediators of tumor angiogenesis: Enhanced expression and activation of vascular endothelial growth factor receptor KDR in primary breast cancer. Int J Cancer 1999; 84: 293–8.

    Article  PubMed  CAS  Google Scholar 

  16. Gasparini G, Toi M, Gion M et al. Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J Natl Cancer Inst 1997; 89: 139–47.

    Article  PubMed  CAS  Google Scholar 

  17. Relf M, Lejeune S, Scott PA et al. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 1997; 57: 963–9.

    PubMed  CAS  Google Scholar 

  18. Toi M, Inada K, Suzuki H et al. Tumor angiogenesis in breast cancer: Its importance as a prognostic indicator and the association with vascular endothelial growth factor expression. Breast Cancer Res Treat 1995; 36: 193–204.

    Article  PubMed  CAS  Google Scholar 

  19. Grant DS, Kibbey MC, Kinsella JL et al. The role of basement membrane in angiogenesis and tumor growth. Pathol Res Pract 1994; 190: 854–63.

    PubMed  CAS  Google Scholar 

  20. Martinez-Hernandez A, Amenta PS. The basement membrane in pathology. Lab Invest 1083; 48: 656–77.

    Google Scholar 

  21. Furcht LT. Critical factors controlling angiogenesis: Cell products, cell matrix, and growth factors. Lab Invest 1986; 55: 505–9.

    PubMed  CAS  Google Scholar 

  22. Rak JW, St Croix BD, Kerbel RS. Consequences of angiogenesis for tumor progression, metastasis and cancer therapy. Anticancer Drugs 1995; 6: 3–18.

    PubMed  CAS  Google Scholar 

  23. Orre M, Lotfi-Miri M, Mamers P et al. Increased microvessel density in mucinous compared with malignant serous and benign tumours of the ovary. Br J Cancer 1998; 77: 2204–9.

    PubMed  CAS  Google Scholar 

  24. Kelly FD, Tawia SA, Rogers PAW. Immunohistochemical characterization of human endometrial microvascular basement membrane components during the normal menstrual cycle. Hum Reprod 1995; 10: 268–76.

    PubMed  CAS  Google Scholar 

  25. Yee C, Shiu RP. Degradation of endothelial basement membrane by human breast cancer cell lines. Cancer Res 1986; 46: 1835–9.

    PubMed  CAS  Google Scholar 

  26. De Waal RM, Van Altena MC, Erhard H et al. Lack of lymphangiogenesis in human primary cutaneous melanoma. Consequences for the mechanism of lymphatic dissemination. Am J Pathol 1997; 150: 1951–7.

    PubMed  CAS  Google Scholar 

  27. Schlingemann RO, Rietveld FJ, Kwaspen F et al. Differential expression of markers for endothelial cells, pericytes, and basal lamina in the microvasculature of tumors and granulation tissue. Am J Pathol 1991; 138: 1335–47.

    PubMed  CAS  Google Scholar 

  28. Nerlich AG, Schleicher E. Identification of lymph and blood capillaries by immunohistochemical staining for various basement membrane components. Histochemistry 1991; 96: 449–53.

    Article  PubMed  CAS  Google Scholar 

  29. Otsuki Y, Kubo H, Magari S. Immunohistochemical differentiation between lymphatic vessels and blood vessels — use of antibasement membrane antibodies and anti-factor VIII-related antigen. Arch Histol Cytol 1990; 53(Suppl): 95–105.

    PubMed  Google Scholar 

  30. Costello P, Mccann A, Carney DN et al. Prognostic significance of microvessel density in lymph node negative breast carcinoma. Hum Pathol 1995; 26(1): 81–1184.

    Article  Google Scholar 

  31. Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol 1992; 3: 65–71.

    PubMed  CAS  Google Scholar 

  32. Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol 1995; 147: 9–19.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orre, M., Susil, B. & Rogers, P.A. Microvessel density and vascular basement membrane immunostaining in tumours of the breast. Angiogenesis 3, 175–180 (1999). https://doi.org/10.1023/A:1009035123733

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009035123733

Navigation