Skip to main content
Articles

The Role of a Right Fronto-Parietal Network in Cognitive Control

Published Online:https://doi.org/10.1027/0269-8803.20.4.286

Seemingly distinct cognitive tasks often activate similar anatomical networks. For example, the right fronto-parietal cortex is active across a wide variety of paradigms suggesting that these regions may subserve a general cognitive function. We utilized fMRI and a GO/NOGO task consisting of two conditions, one with intermittent unpredictive “cues-to-attend” and the other without any “cues-to-attend,” in order to investigate areas involved in inhibition of a prepotent response and top-down attentional control. Sixteen subjects (5 male, ages ranging from 20 to 30 years) responded to an alternating sequence of the letters X and Y and withheld responding when the alternating sequence was broken (e.g., when X followed an X). Cues were rare stimulus font-color changes, which were linked to a simple instruction to attend to the task at hand. We hypothesized that inhibitions and cues, despite requiring quite different responses from subjects, might engage similar top-down attentional control processes and would thus share a common network of anatomical substrates. Although inhibitions and cues activated a number of distinct brain regions, a similar network of right dorsolateral prefrontal and inferior parietal regions was active for both. These results suggest that this network, commonly activated for response inhibition, may subserve a more general cognitive control process involved in allocating top-down attentional resources.

References

  • Aron, A.R. , Fletcher, P.C. , Bullmore, E.T. , Sahakian, B.J. , Robbins, T.W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6, 115– 6 First citation in articleCrossrefGoogle Scholar

  • Awh, E. , Jonides, J. (1998). Spatial working memory and spatial selective attention. In R. Parasuraman (Ed.), The attentive brain (pp. 353-380). Cambridge, MA: MIT Press First citation in articleGoogle Scholar

  • Banich, M.T. , Milham, M.P. , Atchley, R.A. , Cohen, N.J. , Webb, A. , Wszalek, T. (2000). Prefrontal regions play a predominant role in imposing an attentional “set”: Evidence from fMRI. Brain Research: Cognitive Brain Research, 10(1-2), 1– 9 First citation in articleCrossrefGoogle Scholar

  • Booth, J.R. , Burman, D.D. , Meyer, J.R. , Lei, Z. , Trommer, B.L. , Davenport, N.D. (2003). Neural development of selective attention and response inhibition. Neuroimage, 20, 737– 751 First citation in articleCrossrefGoogle Scholar

  • Braver, T.S. , Barch, D.M. , Gray, J.R. , Molfese, D.L. , 6. Snyder, A. (2001). Anterior cingulate cortex and response conflict: Effects of frequency, inhibition, and errors. Cerebral Cortex, 11, 825– 836 First citation in articleCrossrefGoogle Scholar

  • Bunge, S.A. , Ochsner, K.N. , Desmond, J.E. , Glover, G.H. , Gabrielli, J.D. (2001). Prefrontal regions involved in keeping information in and out of mind. Brain, 124, 2074– 2086 First citation in articleCrossrefGoogle Scholar

  • Burgess, P.W. , Alderman, N. , Evans, J. , Emslie, H. , Wilson, B.A. (1998). The ecological validity of tests of executive function. Journal of the International Neuropsychological Society, 4, 547– 558 First citation in articleCrossrefGoogle Scholar

  • Burle, B. , Vidal, F. , Tandonnet, C. , Hasbroucq, T. (2004). Physiological evidence for response inhibition in choice reaction time tasks. Brain and Cognition, 56, 153– 164 First citation in articleCrossrefGoogle Scholar

  • Chan, R.C. (2001). Dysexecutive symptoms among a nonclinical sample: A study with the use of the Dysexecutive Questionnaire. British Journal of Psychology, 92, 551– 565 First citation in articleCrossrefGoogle Scholar

  • Cohen, J.D. , Braver, T.S. , O'Reilly, R.C. (1996). A computational approach to prefrontal cortex, cognitive control, and schizophrenia: Recent developments and current challenges. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences, 351(1346), 1515– 1527 First citation in articleCrossrefGoogle Scholar

  • Cohen, M.S. (1997). Parametric analysis of fMRI data using linear systems methods. Neuroimage, 6, 93– 103 First citation in articleCrossrefGoogle Scholar

  • Corbetta, M. , Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201– 215 First citation in articleCrossrefGoogle Scholar

  • Coull, J.T. , Frackowiak, R.S. , Frith, C.D. (1998). Monitoring for target objects: Activation of right frontal and parietal cortices with increasing time on task. Neuropsychologia, 36, 1325– 1334 First citation in articleCrossrefGoogle Scholar

  • Coull, J.T. , Frith, C.D. (1998). Differential activation of right superior parietal cortex and intraparietal sulcus by spatial and nonspatial attention. Neuroimage, 8, 176– 187 First citation in articleCrossrefGoogle Scholar

  • Coull, J.T. , Frith, C.D. , Frackowiak, R.S. , Grasby, P.M. (1996). A fronto-parietal network for rapid visual information processing: A PET study of sustained attention and working memory. Neuropsychologia, 34, 1085– 95 First citation in articleCrossrefGoogle Scholar

  • Coull, J.T. , Frith, C.D. , Buchel, C. , Nobre, A.C. (2000). Orienting attention in time: behavioral and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychologia, 38, 808– 19 First citation in articleCrossrefGoogle Scholar

  • Coull, J.T. , Nobre, A.C. , Frith, C.D. (2001). The noradrenergic alpha2 agonist clonidine modulates behavioural and neuroanatomical correlates of human attentional orienting and alerting. Cerebral Cortex, 11(1), 73– 84 First citation in articleCrossrefGoogle Scholar

  • Cox, R.W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162– 173 First citation in articleCrossrefGoogle Scholar

  • Culham, J.C. , Kanwisher, N.G. (2001). Neuroimaging of cognitive functions in human parietal cortex. Current Opinion in Neurobiology, 11, 157– 163 First citation in articleCrossrefGoogle Scholar

  • de Zubicaray, G.I. , Andrew, C. , Zelaya, F.O. , Williams, S.C. , Dumanoir, C. (2000). Motor response suppression and the prepotent tendency to respond: A parametric fMRI study. Neuropsychologia, 38, 1280– 1291 First citation in articleCrossrefGoogle Scholar

  • D'Esposito, M. , Ballard, D. , Aguirre, G.K. , Zarahn, E. (1998). Human prefrontal cortex is not specific for working memory: A functional MRI study. Neuroimage, 8, 274– 282 First citation in articleCrossrefGoogle Scholar

  • D'Esposito, M. , Postle, B.R. (2002). The organization of working memory function in lateral prefrontal cortex: Evidence from event-related functional MRI. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (pp. 168- 187). New York: Oxford University Press First citation in articleGoogle Scholar

  • D'Esposito, M. , Postle, B.R. , Jonides, J. , Smith, E.E. (1999). The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 96, 7514– 7519 First citation in articleCrossrefGoogle Scholar

  • Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2(11), 820– 829 First citation in articleCrossrefGoogle Scholar

  • Duncan, J. , Owen, A.M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neuroscience, 23(10), 475– 483 First citation in articleCrossrefGoogle Scholar

  • Egner, T. , Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8, 1784– 1790 First citation in articleCrossrefGoogle Scholar

  • Frith, C. , Dolan, R. (1996). The role of the prefrontal cortex in higher cognitive functions. Brain Research: Cognitive Brain Research, 5(1-2), 175– 181 First citation in articleCrossrefGoogle Scholar

  • Garavan, H. , Ross, T.J. , Murphy, K. , Roche, R.A. , Stein, E.A. (2002). Dissociable executive functions in the dynamic control of behavior: Inhibition, error detection, and correction. Neuroimage, 17, 1820– 1829 First citation in articleCrossrefGoogle Scholar

  • Garavan, H. , Ross, T.J. , Stein, E.A. (1999). Right hemispheric dominance of inhibitory control: An event-related functional MRI study. Proceedings of the National Academy of Sciences of the United States of America, 96, 8301– 8306 First citation in articleCrossrefGoogle Scholar

  • Gemba, H. , Sasaki, K. (1990). Potential related to no-go reaction in go/no-go hand movement with discrimination between tone stimuli of different frequencies in the monkey. Brain Research, 537, 340– 344 First citation in articleCrossrefGoogle Scholar

  • Goldman-Rakic, P.S. , Leung, H.C. (2002). Functional architecture of the dorsolateral prefrontal cortex in monkeys and humans. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (pp. 31-50). New York: Oxford University Press First citation in articleGoogle Scholar

  • Hester, R. , Murphy, K. , Foxe, J.J. , Foxe, D.M. , Javitt, D.C. , Garavan, H. (2004). Predicting success: Patterns of pre-NOGO cortical activation and deactivation prior to response inhibition. Journal of Cognitive Neuroscience, 16, 776– 785 First citation in articleCrossrefGoogle Scholar

  • Hester R., Murphy,K. , Garavan, H. (2004). Beyond common resources: The cortical basis for resolving task interference. Neuroimage, 23, 202– 212 First citation in articleCrossrefGoogle Scholar

  • Kawashima, R. , Satoh, K. , Itoh, H. , Ono, S. , Furumoto, S. , Gotoh, R. (1996). Functional anatomy of GO/NO-GO discrimination and response selection - A PET study in man. Brain Research, 728(1), 79– 89 First citation in articleGoogle Scholar

  • Keppel, G. (1991). Design and analysis: A researcher's handbook . Englewood Cliffs, NJ: Prentice Hall First citation in articleGoogle Scholar

  • Kimberg, D.Y. , Farah, M.J. (1993). A unified account of cognitive impairments following frontal lobe damage: The role of working memory in complex, organized behavior. Journal of Experimental Psychology: General, 122, 411– 428 First citation in articleCrossrefGoogle Scholar

  • Kinomura, S. , Larsson, J. , Gulyas, B. , Roland, P.E. (1996). Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science, 271(5248), 512– 515 First citation in articleCrossrefGoogle Scholar

  • Konishi, S. , Nakajima, K. , Uchida, I. , Kikyo, H. , Kameyama, M. , Miyashita, Y. (1999). Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain, 122, 981– 991 First citation in articleCrossrefGoogle Scholar

  • Konishi, S. , Nakajima, K. , Uchida, I. , Sekihara, K. , Miyashita, Y. (1998). No-go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging. European Journal of Neuroscience, 10, 1209– 1213 First citation in articleCrossrefGoogle Scholar

  • MacDonald, A.W. , Cohen, J.D. , Stenger, V.A. , Carter, C.S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835– 1838 First citation in articleCrossrefGoogle Scholar

  • Makino, Y. , Yokosawa, K. , Takeda, Y. , Kumada, T. (2004). Visual search and memory search engage extensive overlapping cerebral cortices: An fMRI study. Neuroimage, 23, 525– 533 First citation in articleCrossrefGoogle Scholar

  • Manly, T. , Davison, B. , Gaynord, B. , Greenfield, E. , Heutnik, J. , Parr, A. (2004). An electronic knot in the handkerchief: ‘Content free cueing' and the maintenance of attentive control. Neuropsychological Rehabilitation, 14(1-2), 89– 116 First citation in articleCrossrefGoogle Scholar

  • Manly, T. , Hawkins, K. , Evans, J. , Woldt, K. , Robertson, I.H. (2002). Rehabilitation of executive function: Facilitation of effective goal management on complex tasks using periodic auditory alerts. Neuropsychologia, 40, 271– 281 First citation in articleCrossrefGoogle Scholar

  • Manly, T. , Owen, A.M. , McAvinue, L. , Datta, A. , Lewis, G.H. , Scott, S.K. (2003). Enhancing the sensitivity of a sustained attention task to frontal damage: Convergent clinical and functional imaging evidence. Neurocase, 9, 340– 349 First citation in articleCrossrefGoogle Scholar

  • McCarthy, G.M. , Goldman-Rakic, P. (1997). Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional MRI. Journal of Neurophysiology, 77, 1630– 1634 First citation in articleCrossrefGoogle Scholar

  • Menon, V. , Adleman, N.E. , White, C.D. , Glover, G.H. , Reiss, A.L. (2001). Error-related brain activation during a Go/NoGo response inhibition task. Human Brain Mapping, 12, 131– 143 First citation in articleCrossrefGoogle Scholar

  • Miller, E.K. (1999). Neurobiology. Straight from the top. Nature, 401(6754), 650– 651 First citation in articleCrossrefGoogle Scholar

  • Miller, E.K. , Cohen, J.D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167– 202 First citation in articleCrossrefGoogle Scholar

  • Miyake, A. , Friedman, N.P. , Emerson, M.J. , Witzki, A.H. , Howerter, A. , Wager, T.D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49– 100 First citation in articleCrossrefGoogle Scholar

  • Mostofsky, S.H. , Schafer, J.G. , Abrams, M.T. , Goldberg, M.C. , Flower, A.A. , Boyce, A. (2003). fMRI evidence that the neural basis of response inhibition is task-dependent. Brain Research: Cognitive Brain Research, 17, 419– 430 First citation in articleCrossrefGoogle Scholar

  • Nieuwenhuis, S. , Yeung, N. (2005). Neural mechanisms of attention and control: Losing our inhibitions?. Nature Neuroscience, 8, 1631– 1633 First citation in articleCrossrefGoogle Scholar

  • Norman, D. , Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. Davidson, G. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation (pp. 1-18). New York: Plenum First citation in articleGoogle Scholar

  • Passingham, R.E. , Rowe, J.B. (2002). Dorsal prefrontal cortex: Maintenance in memory or attentional selection?. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (pp. 221-232). New York: Oxford University Press First citation in articleGoogle Scholar

  • Posner, M.I. , Petersen, S.E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25– 42 First citation in articleCrossrefGoogle Scholar

  • Postle, B.R. , D'Esposito, M. (1999). “What-then-where” in visual working memory: An event-related fMRI study. Journal of Cognitive Neuroscience, 11, 585– 597 First citation in articleCrossrefGoogle Scholar

  • Rainer, G. , Asaad, W.F. , Miller, E.K. (1998). Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature, 393, 577– 579 First citation in articleCrossrefGoogle Scholar

  • Rao, S.C. , Rainer, G. , Miller, E.K. (1997). Integration of what and where in the primate prefrontal cortex. Science, 276(5313), 821– 824 First citation in articleCrossrefGoogle Scholar

  • Rowe, J.B. , Toni, I. , Josephs, O. , Frackowiak, R.S. , Passingham, R.E. (2000). The prefrontal cortex: Response selection or maintenance within working memory?. Science, 288(5471), 1656– 1660 First citation in articleCrossrefGoogle Scholar

  • Rubia, K. , Russell, T. , Overmeyer, S. , Brammer, M.J. , Bullmore, E.T. , Sharma, T. (2001). Mapping motor inhibition: Conjunctive brain activations across different versions of go/no-go and stop tasks. Neuroimage, 13, 250– 261 First citation in articleCrossrefGoogle Scholar

  • Ruchsow, M. , Grothe, J. , Spitzer, M. , Kiefer, M. (2002). Human anterior cingulate cortex is activated by negative feedback: Evidence from event-related potentials in a guessing task. Neuroscience Letters, 325, 203– 206 First citation in articleCrossrefGoogle Scholar

  • Sasaki, K. , Gemba, H. , Tsujimoto, T. (1989). Suppression of visually initiated hand movement by stimulation of the prefrontal cortex in the monkey. Brain Research, 495, 100– 107 First citation in articleCrossrefGoogle Scholar

  • Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences, 298(1089), 199– 209 First citation in articleCrossrefGoogle Scholar

  • Sturm, W. , de Simone, A. , Krause, B.J. , Specht, K. , Hesselmann, V. , Radermacher, I. (1999). Functional anatomy of intrinsic alertness: Evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere. Neuropsychologia, 37, 797– 805 First citation in articleCrossrefGoogle Scholar

  • Sturm, W. , Willmes, K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage, 14(1 Pt 2), S76– 84 First citation in articleGoogle Scholar

  • Talairach, J. , Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain . New York: Thieme First citation in articleGoogle Scholar

  • Thiel, C.M. , Zilles, K. , Fink, G.R. (2004). Cerebral correlates of alerting, orienting, and reorienting of visuospatial attention: An event-related fMRI study. Neuroimage, 21(1), 318– 328 First citation in articleCrossrefGoogle Scholar

  • Ward, B.D. , Garavan, H. , Ross, T.J. , Bloom, A.S. , Cox, R.W. , Stein, E.A. (1998). Nonlinear regression for fMRI time series analysis. Neuroimage, 7, S767– First citation in articleGoogle Scholar

  • Weis, S. , Fimm, B. , Longoni, F. , Dietrich, T. , Zahn, R. , Herzog, H. (2000). The functional anatomy of intrinsic and phasic alertness - A PET study with auditory stimulation. NeuroImage, 11(5), S10– First citation in articleGoogle Scholar

  • Wilkins, A.J. , Shallice, T. , McCarthy, R. (1987). Frontal lesions and sustained attention. Neuropsychologia, 25, 359– 365 First citation in articleCrossrefGoogle Scholar