Skip to main content
Articles

No Effect of Training State on Ambulatory Measures of Cardiac Autonomic Control

Published Online:https://doi.org/10.1027/0269-8803.22.3.130

We examined the effect of training state on cardiac autonomic control in a naturalistic setting. Twenty-four vigorous exercisers were compared to age- and sex-matched sedentary controls. The regular exercisers were subjected to a 6-week training program after which they were randomized to 2 weeks of continued training or 2 weeks of detraining. Cardiac autonomic control was measured over a 24-h period by ambulatory recording, using the preejection period (PEP) and respiratory sinus arrhythmia (RSA). Nonexercising controls had a significantly higher ambulatory heart rate (HR) compared to the regular exercisers but comparable 24-h levels of PEP and RSA. In regular exercisers, 2 weeks of detraining did not significantly change the 24-h levels of HR, PEP, or RSA. We conclude that the bradycardia in healthy regular exercisers is the result of a lower intrinsic heart rate rather than a shift in cardiac autonomic balance from sympathetic to vagal control.

References

  • Alvarez, G.E. , Halliwill, J.R. , Ballard, T.P. , Beske, S.D. , Davy, K.P. (2005). Sympathetic neural regulation in endurance-trained humans: Fitness vs. fatness. Journal of Applied Physiology, 98, 498–502. First citation in articleCrossrefGoogle Scholar

  • Aubert, A.E. , Seps, B. , Beckers, F. (2003). Heart rate variability in athletes. Sports Medicine, 33, 889–919. First citation in articleCrossrefGoogle Scholar

  • Berntson, G.G. , Bigger, J.T. Jr. , Eckberg, D.L. , Grossman, P. , Kaufmann, P.G. , Malik, M. , et al. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34, 623–648. First citation in articleCrossrefGoogle Scholar

  • Berntson, G.G. , Cacioppo, J.T. , Binkley, P.F. , Uchino, B.N. , Quigley, K.S. , Fieldstone, A. (1994). Autonomic cardiac control. III. Psychological stress and cardiac response in autonomic space as revealed by pharmacological blockades. Psychophysiology, 31, 599–608. First citation in articleGoogle Scholar

  • Bhan, A.K. , Scheuer, J. (1972). Effects of physical training on cardiac actomyosin adenosine triphosphatase activity. The American Journal of Physiology, 223, 1486–1490. First citation in articleCrossrefGoogle Scholar

  • Billman, G.E. (2002). Aerobic exercise conditioning: A nonpharmacological antiarrhythmic intervention. Journal of Applied Physiology, 92, 446–454. First citation in articleCrossrefGoogle Scholar

  • Billman, G.E. , Kukielka, M. (2006). Effects of endurance exercise training on heart rate variability and susceptibility to sudden cardiac death: Protection is not due to enhanced cardiac vagal regulation. Journal of Applied Physiology, 100, 896–906. First citation in articleCrossrefGoogle Scholar

  • Bonaduce, D. , Petretta, M. , Cavallaro, V. , Apicella, C. , Ianniciello, A. , Romano, M. , et al. (1998). Intensive training and cardiac autonomic control in high level athletes. Medicine and Science in Sports and Exercise, 30, 691–696. First citation in articleCrossrefGoogle Scholar

  • Bouchard, C. , Rankinen, T. (2001). Individual differences in response to regular physical activity. Medicine and Science in Sports and Exercise, 33, S446–S451. First citation in articleCrossrefGoogle Scholar

  • Boutcher, S.H. , Stein, P. (1995). Association between heart rate variability and training response in sedentary middle-aged men. European Journal of Applied Physiology and Occupational Physiology, 70, 75–80. First citation in articleCrossrefGoogle Scholar

  • Buchheit, M. , Simon, C. , Charloux, A. , Doutreleau, S. , Piquard, F. , Brandenberger, G. (2005). Heart rate variability and intensity of habitual physical activity in middle-aged persons. Medicine and Science in Sports and Exercise, 37, 1530–1534. First citation in articleCrossrefGoogle Scholar

  • Burgess, H.J. , Trinder, J. , Kim, Y. , Luke, D. (1997). Sleep and circadian influences on cardiac autonomic nervous system activity. AJP – Heart and Circulatory Physiology, 273, 1761–1768. First citation in articleCrossrefGoogle Scholar

  • Carter, J.B. , Banister, E.W. , Blaber, A.P. (2003). Effect of endurance exercise on autonomic control of heart rate. Sports Medicine, 33, 33–46. First citation in articleCrossrefGoogle Scholar

  • Cullinane, E.M. , Sady, S.P. , Vadeboncoeur, L. , Burke, M. , Thompson, P.D. (1986). Cardiac size and VO2Max do not decrease after short-term exercise cessation. Medicine and Science in Sports and Exercise, 18, 420–424. First citation in articleCrossrefGoogle Scholar

  • de Geus, E.J. , van Doornen, L.J. , Orlebeke, J.F. (1993). Regular exercise and aerobic fitness in relation to psychological make-up and physiological stress reactivity. Psychosomatic Medicine, 55, 347–363. First citation in articleCrossrefGoogle Scholar

  • de Geus, E.J. , Willemsen, G.H. , Klaver, C.H. , van Doornen, L.J. (1995). Ambulatory measurement of respiratory sinus arrhythmia and respiration rate. Biological Psychology, 41, 205–227. First citation in articleCrossrefGoogle Scholar

  • de Geus, E.J.C. , Karsdorp, R. , Boer, B. , de Regt, G. , Orlebeke, J.F. , van Doornen, L.J.P. (1996). Effect of aerobic fitness training on heart rate variability and cardiac baroreflex sensitivity. Homeostasis, 37, 28–51. First citation in articleGoogle Scholar

  • de Geus, E.J.C. , van Doornen, L.J.P. , Visser, D.C. , Orlebeke, J.F. (1990). Existing and training induced differences in aerobic fitness, their relationship to physiological response patterns during different types of stress. Psychophysiology, 27, 457–477. First citation in articleCrossrefGoogle Scholar

  • de Meersman, R.E. (1993). Heart rate variability and aerobic fitness. American Heart Journal, 125, 726–731. First citation in articleCrossrefGoogle Scholar

  • Dixon, E.M. , Kamath, M.V. , Mccartney, N. , Fallen, E.L. (1992). Neural regulation of heart rate variability in endurance athletes and sedentary controls. Cardiovascular Research, 26, 713–719. First citation in articleCrossrefGoogle Scholar

  • Fagard, R.H. , Cornelissen, V.A. (2007). Effect of exercise on blood pressure control in hypertensive patients. European Journal of Cardiovascular Prevention and Rehabilitation, 14, 12–17. First citation in articleCrossrefGoogle Scholar

  • Gamelin, F.X. , Berthoin, S. , Sayah, H. , Libersa, C. , Bosquet, L. (2007). Effect of training and detraining on heart rate variability in healthy young men. International Journal of Sports Medicine, 564–570. First citation in articleGoogle Scholar

  • Goedhart, A.D. , Kupper, N. , Willemsen, G. , Boomsma, D.I. , de Geus, E.J.C. (2006). Temporal stability of ambulatory stroke volume and cardiac output measured by impedance cardiography. Biological Psychology, 72, 110–117. First citation in articleCrossrefGoogle Scholar

  • Goedhart, A.D. , van der Sluis, S. , Houtveen, J.H. , Willemsen, G. , de Geus, E.J.C. (2007). Comparison of time and frequency domain measures of RSA in ambulatory recordings. Psychophysiology, 44, 203–215. First citation in articleCrossrefGoogle Scholar

  • Goldberger, J.J. , Kim, Y.H. , Ahmed, M.W. , Kadish, A.H. (1996). Effect of graded increases in parasympathetic tone on heart rate variability. Journal of Cardiovascular Electrophysiology, 7, 594–602. First citation in articleCrossrefGoogle Scholar

  • Goldsmith, R.L. , Bigger, J.T. , Bloomfield, D.M. , Steinman, R.C. (1997). Physical fitness as a determinant of vagal modulation. Medicine and Science in Sports and Exercise, 29, 812–817. First citation in articleCrossrefGoogle Scholar

  • Goldsmith, R.L. , Bigger, J.T. , Steinman, R.C. , Fleiss, J.L. (1992). Comparison of 24-hour parasympathetic activity in endurance-trained and untrained young men. Journal of the American College of Cardiology, 20, 552–558. First citation in articleCrossrefGoogle Scholar

  • Goldsmith, R.L. , Bloomfield, D.M. , Rosenwinkel, E.T. (2000). Exercise and autonomic function. Coronary Artery Disease, 11, 129–135. First citation in articleCrossrefGoogle Scholar

  • Grossman, P. , Wilhelm, F.H. , Spoerle, M. (2004). Respiratory sinus arrhythmia, cardiac vagal control, and daily activity. AJP – Heart and Circulatory Physiology, 287, H728–H734. First citation in articleCrossrefGoogle Scholar

  • Gutin, B. , Barbeau, P. , Litaker, M.S. , Ferguson, M. , Owens, S. (2000). Heart rate variability in obese children, relations to total body and visceral adiposity, and changes with physical training and detraining. Obesity Research, 8, 12–19. First citation in articleCrossrefGoogle Scholar

  • Gutin, B. , Howe, C.A. , Johnson, M.H. , Humphries, M.C. , Snieder, H. , Barbeau, P. (2005). Heart rate variability in adolescents, relations to physical activity, fitness, and adiposity. Medicine and Science in Sports and Exercise, 37, 1856–1863. First citation in articleCrossrefGoogle Scholar

  • Harris, W.S. , Schoenfeld, C.D. , Weissler, A.M. (1967). Effects of adrenergic receptor activation and blockade on the systolic preejection period, heart rate, and arterial pressure in man. Journal of Clinical Investigation, 46, 1704–1714. First citation in articleCrossrefGoogle Scholar

  • Hatfield, B.D. , Spalding, T.W. , Santa Maria, D.L. , Porges, S.W. , Potts, J.T. , Byrne, E.A. , et al. (1998). Respiratory sinus arrhythmia during exercise in aerobically trained and untrained men. Medicine and Science in Sports and Exercise, 30, 206–214. First citation in articleCrossrefGoogle Scholar

  • Hautala, A.J. , Makikallio, T.H. , Kiviniemi, A. , Laukkanen, R.T. , Nissila, S. , Huikuri, H.V. , et al. (2003). Cardiovascular autonomic function correlates with the response to aerobic training in healthy sedentary subjects. American Journal of Physiology-Heart and Circulatory Physiology, 285, H1747–H1752. First citation in articleCrossrefGoogle Scholar

  • Houtveen, J.H. , Groot, P.F.C. , de Geus, E.J.C. (2005). Effects of variation in posture and respiration on RSA and preejection period. Psychophysiology, 42, 713–719. First citation in articleCrossrefGoogle Scholar

  • Iwasaki, K.I. , Zhang, R. , Zuckerman, J.H. , Levine, B.D. (2003). Dose-response relationship of the cardiovascular adaptation to endurance training in healthy adults, how much training for what benefit?. Journal of Applied Physiology, 95, 1575–1583. First citation in articleCrossrefGoogle Scholar

  • Katona, P.G. , Jih, F. (1975). Respiratory sinus arrhythmia, noninvasive measure of parasympathetic cardiac control. Journal of Applied Physiology, 39, 801–805. First citation in articleCrossrefGoogle Scholar

  • Katona, P.G. , Mclean, M. , Dighton, D.H. , Guz, A. (1982). Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest. Journal of Applied Physiology, 52, 1652–1657. First citation in articleCrossrefGoogle Scholar

  • Kenney, W.L. (1985). Parasympathetic control of resting heart-rate – Relationship to aerobic power. Medicine and Science in Sports and Exercise, 17, 451–455. First citation in articleCrossrefGoogle Scholar

  • Kingwell, B.A. , Dart, A.M. , Jennings, G.L. , Korner, P.I. (1992). Exercise training reduces the sympathetic component of the blood-pressure heart-rate baroreflex in man. Clinical Science, 82, 357–362. First citation in articleCrossrefGoogle Scholar

  • Krzeminski, K. , Kruk, B. , Nazar, K. , Ziemba, A.W. , Cybulski, G. , Niewiadomski, W. (2000). Cardiovascular, metabolic, and plasma catecholamine responses to passive and active exercises. Journal of Physiology and Pharmacology, 51, 267–278. First citation in articleGoogle Scholar

  • Lewis, S.F. , Nylander, E. , Gad, P. , Areskog, N.H. (1980). Nonautonomic component in bradycardia of endurance trained men at rest and during exercise. Acta Physiologica Scandinavica, 109, 297–305. First citation in articleCrossrefGoogle Scholar

  • Light, K.C. , Obrist, P.A. , James, S.A. , Strogatz, D.S. (1987). Cardiovascular responses to stress, 2. Relationships to aerobic exercise patterns. Psychophysiology, 24, 79–86. First citation in articleGoogle Scholar

  • Lin, Y.C. , Horvath, S.M. (1972). Autonomic nervous control of cardiac frequency in exercise-trained rat. Journal of Applied Physiology, 33, 796–799. First citation in articleCrossrefGoogle Scholar

  • Loimaala, A. , Huikuri, H. , Oja, P. , Pasanen, M. , Vuori, I. (2000). Controlled 5-month aerobic training improves heart rate but not heart rate variability or baroreflex sensitivity. Journal of Applied Physiology, 89, 1825–1829. First citation in articleCrossrefGoogle Scholar

  • Martinmaki, K. , Rusko, H. , Kooistra, L. , Kettunen, J. , Saalasti, S. (2006). Intraindividual validation of heart rate variability indexes to measure vagal effects on hearts. AJP – Heart and Circulatory Physiology, 290, H640–H647. First citation in articleCrossrefGoogle Scholar

  • Meredith, I.T. , Friberg, P. , Jennings, G.L. , Dewar, E.M. , Fazio, V.A. , Lambert, G.W. , et al. (1991). Exercise training lowers resting renal but not cardiac sympathetic activity in humans. Hypertension, 18, 575–582. First citation in articleCrossrefGoogle Scholar

  • Mezzacappa, E.S. , Kelsey, R.M. , Katkin, E.S. (1999). The effects of epinephrine administration on impedance cardiographic measures of cardiovascular function. International Journal of Psychophysiology, 31, 189–196. First citation in articleCrossrefGoogle Scholar

  • Miyamoto, Y. , Higuchi, J. , Abe, Y. , Hiura, T. , Nakazono, Y. , Mikami, T. (1983). Dynamics of cardiac output and systolic time intervals in supine and upright exercise. Journal of Applied Physiology, 55, 1674–1681. First citation in articleCrossrefGoogle Scholar

  • Mueller, P.J. (2007). Exercise training and sympathetic nervous system activity, Evidence for physical activity dependent neural plasticity. Clinical and Experimental Pharmacology and Physiology, 34, 377–384. First citation in articleCrossrefGoogle Scholar

  • Mujika, I. , Padilla, S. (2000). Detraining, loss of training-induced physiological and performance adaptations. Part I: Short term insufficient training stimulus. Sports Medicine, 30, 79–87. First citation in articleGoogle Scholar

  • Mujika, I. , Padilla, S. (2001). Cardiorespiratory and metabolic characteristics of detraining in humans. Medicine and Science in Sports and Exercise, 33, 413–421. First citation in articleCrossrefGoogle Scholar

  • Negrao, C.E. , Moreira, E.D. , Brum, P.C. , Denadai, M.L.D.R. , Krieger, E.M. (1992). Vagal and sympathetic control of heart-rate during exercise by sedentary and exercise-trained rats. Brazilian Journal of Medical and Biological Research, 25, 1045–1052. First citation in articleGoogle Scholar

  • Newlin, D.B. , Levenson, R.W. (1979). Preejection period: Measuring beta-adrenergic influences upon the heart. Psychophysiology, 16, 546–553. First citation in articleCrossrefGoogle Scholar

  • Pichot, V. , Busso, T. , Roche, F. , Garet, M. , Costes, F. , Duverney, D. , et al. (2002). Autonomic adaptations to intensive and overload training periods: A laboratory study. Medicine and Science in Sports and Exercise, 34, 1660–1666. First citation in articleCrossrefGoogle Scholar

  • Powell, K.E. , Thompson, P.D. , Caspersen, C.J. , Kendrick, J.S. (1987). Physical activity and the incidence of coronary heart disease. Annual Review of Public Health, 8, 253–287. First citation in articleCrossrefGoogle Scholar

  • Ray, C.A. , Hume, K.M. (1998). Sympathetic neural adaptations to exercise training in humans: Insights from microneurography. Medicine and Science in Sports and Exercise, 30, 387–391. First citation in articleCrossrefGoogle Scholar

  • Rice, T. , An, P. , Gagnon, J. , Leon, A.S. , Skinner, J.S. , Wilmore, J.H. , et al. (2002). Heritability of HR and BP response to exercise training in the HERITAGE family study. Medicine and Science in Sports and Exercise, 34, 972–979. First citation in articleCrossrefGoogle Scholar

  • Riese, H. , Groot, P.F. , van den Berg, M. , Kupper, N.H. , Magnee, E.H. , Rohaan, E.J. , et al. (2003). Large-scale ensemble averaging of ambulatory impedance cardiograms. Behavior Research Methods, Instruments & Computers, 35, 467–477. First citation in articleGoogle Scholar

  • Ritz, T. , Dahme, B. (2006). Implementation and interpretation of respiratory sinus arrhythmia measures in psychosomatic medicine: Practice against better evidence?. Psychosomatic Medicine, 68, 617–627. First citation in articleCrossrefGoogle Scholar

  • Rosenwinkel, E.T. , Bloomfield, D.M. , Arwardy, M.A. , Goldsmith, R.L. (2001). Exercise and autonomic function in health and cardiovascular disease. Cardiology Clinics, 19, 369–387. First citation in articleCrossrefGoogle Scholar

  • Rossy, L.A. , Thayer, J.F. (1998). Fitness and gender-related differences in heart period variability. Psychosomatic Medicine, 60, 773–781. First citation in articleCrossrefGoogle Scholar

  • Roveda, F. , Middlekauff, H.R. , Rondon, M.U.P.B. , Reis, S.F. , Souza, M. , Nastari, L. , et al. (2003). The effects of exercise training on sympathetic neural activation in advanced heart failure – A randomized controlled trial. Journal of the American College of Cardiology, 42, 854–860. First citation in articleCrossrefGoogle Scholar

  • Sacknoff, D.M. , Gleim, G.W. , Stachenfeld, N. , Coplan, N.L. (1994). Effect of athletic training on heart-rate-variability. American Heart Journal, 127, 1275–1278. First citation in articleCrossrefGoogle Scholar

  • Sandercock, G.R.H. , Bromley, P.D. , Brodie, D.A. (2005). Effects of exercise on heart rate variability: Inferences from meta-analysis. Medicine and Science in Sports and Exercise, 37, 433–439. First citation in articleCrossrefGoogle Scholar

  • Schachinger, H. , Weinbacher, M. , Kiss, A. , Ritz, R. , Langewitz, W. (2001). Cardiovascular indices of peripheral and central sympathetic activation. Psychosomatic Medicine, 63, 788–796. First citation in articleCrossrefGoogle Scholar

  • Schuit, A.J. , van Amelsvoort, L.G.P.M. , Verheij, T.C. , Rijneke, R.D. , Maan, A.C. , Sweene, C.A. , et al. (1999). Exercise training and heart rate variability in older people. Medicine and Science in Sports and Exercise, 31, 816–821. First citation in articleCrossrefGoogle Scholar

  • Sherwood, A. , Allen, M.T. , Fahrenberg, J. , Kelsey, R.M. , Lovallo, W.R. , van Doornen, L.J.P. (1990). Methodological guidelines for impedance cardiography. Psychophysiology, 27, 1–23. First citation in articleCrossrefGoogle Scholar

  • Sherwood, A. , Allen, M.T. , Obrist, P.A. , Langer, A.W. (1986). Evaluation of beta-adrenergic influences on cardiovascular and metabolic adjustments to physical and psychological stress. Psychophysiology, 23, 89–104. First citation in articleCrossrefGoogle Scholar

  • Sherwood, A. , Light, K.C. , Blumenthal, J.A. (1989). Effects of aerobic exercise training on hemodynamic responses during psychosocial stress in normotensive and borderline hypertensive type-A men – A preliminary-report. Psychosomatic Medicine, 51, 123–136. First citation in articleCrossrefGoogle Scholar

  • Shi, X.R. , Stevens, G.H.J. , Foresman, B.H. , Stern, S.A. , Raven, P.B. (1995). Autonomic nervous-system control of the heart – Endurance exercise training. Medicine and Science in Sports and Exercise, 27, 1406–1413. First citation in articleCrossrefGoogle Scholar

  • Shin, K. , Minamitani, H. , Onishi, S. , Yamazaki, H. , Lee, M. (1997). Autonomic differences between athletes and nonathletes: Spectral analysis approach. Medicine and Science in Sports and Exercise, 29, 1482–1490. First citation in articleCrossrefGoogle Scholar

  • Smith, M.L. , Hudson, D.L. , Graitzer, H.M. , Raven, P.B. (1989). Exercise training bradycardia – The role of autonomic balance. Medicine and Science in Sports and Exercise, 21, 40–44. First citation in articleCrossrefGoogle Scholar

  • Stahle, A. , Nordlander, R. , Bergfeldt, L. (1999). Aerobic group training improves exercise capacity and heart rate variability in elderly patients with a recent coronary event – A randomized controlled study. European Heart Journal, 20, 1638–1646. First citation in articleCrossrefGoogle Scholar

  • Svedenhag, J. , Martinsson, A. , Ekblom, B. , Hjemdahl, P. (1986). Altered cardiovascular responsiveness to adrenaline in endurance-trained subjects. Acta Physiologica Scandinavica, 126, 539–550. First citation in articleCrossrefGoogle Scholar

  • Svedenhag, J. , Martinsson, A. , Ekblom, B. , Hjemdahl, P. (1991). Altered cardiovascular responsiveness to adrenoceptor agonists in endurance-trained men. Journal of Applied Physiology, 70, 531–538. First citation in articleCrossrefGoogle Scholar

  • Svedenhag, J. , Wallin, B.G. , Sundlof, G. , Henriksson, J. (1984). Skeletal-muscle sympathetic activity at rest in trained and untrained subjects. Acta Physiologica Scandinavica, 120, 499–504. First citation in articleCrossrefGoogle Scholar

  • Task Force of the European Society of Cardiology the North American Society of Pacing . (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043–1065. First citation in articleCrossrefGoogle Scholar

  • Uusitalo, A.L.T. , Laitinen, T. , Vaisanen, S.B. , Lansimies, E. , Rauramaa, R. (2004). Physical training and heart rate and blood pressure variability: A 5-yr randomized trial. American Journal of Physiology-Heart and Circulatory Physiology, 286, H1821–H1826. First citation in articleCrossrefGoogle Scholar

  • Uusitalo, A.L.T. , Tahvanainen, K.U.O. , Uusitalo, A.J. , Rusko, H.K. (1996). Noninvasive evaluation of sympathovagal balance in athletes by time and frequency domain analyses of heart rate and blood pressure variability. Clinical Physiology, 16, 575–588. First citation in articleCrossrefGoogle Scholar

  • van Doornen, L.J.P. , de Geus, E.J.C. (1989). Aerobic fitness and the cardiovascular response to stress. Psychophysiology, 26, 17–28. First citation in articleCrossrefGoogle Scholar

  • Wang, J.S. , Jen, C.J. , Chen, H.I. (1997). Effects of chronic exercise and deconditioning on platelet function in women. Journal of Applied Physiology, 83, 2080–2085. First citation in articleCrossrefGoogle Scholar

  • Weinstein, A.A. , Deuster, P.A. , Kop, W.J. (2007). Heart rate variability as a predictor of negative mood symptoms induced by exercise withdrawal. Medicine and Science in Sports and Exercise, 39, 735–741. First citation in articleCrossrefGoogle Scholar

  • Willemsen, G.H. , de Geus, E.J. , Klaver, C.H. , van Doornen, L.J. , Carroll, D. (1996). Ambulatory monitoring of the impedance cardiogram. Psychophysiology, 33, 184–193. First citation in articleCrossrefGoogle Scholar

  • Williams, P.T. (2001). Physical fitness and activity as separate heart disease risk factors: A meta-analysis. Medicine and Science in Sports and Exercise, 33, 754–761. First citation in articleCrossrefGoogle Scholar

  • Winzer, A. , Ring, C. , Carroll, D. , Willemsen, G. , Drayson, M. , Kendall, M. (1999). Secretory immunoglobulin A and cardiovascular reactions to mental arithmetic, cold pressor, and exercise: Effects of beta-adrenergic blockade. Psychophysiology, 36, 591–601. First citation in articleCrossrefGoogle Scholar