Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants

Abstract

Presenilin proteins have been implicated both in developmental signalling by the cell-surface protein Notch and in the pathogenesis of Alzheimer's disease. Loss of presenilin function leads to Notch/lin-12-like mutant phenotypes in Caenorhabditis elegans1,2 and to reduced Notch1 expression in the mouse paraxial mesoderm3. In humans, presenilins that are associated with Alzheimer's disease stimulate overproduction of the neurotoxic 42-amino-acid β-amyloid derivative (Aβ42) of the amyloid-precursor protein APP4. Here we describe loss-of-function mutations in the Drosophila Presenilin gene that cause lethal Notch-like phenotypes such as maternal neurogenic effects during embryogenesis, loss of lateral inhibition within proneural cell clusters, and absence of wing margin formation. We show that presenilin is required for the normal proteolytic production of carboxy-terminal Notch fragments that are needed for receptor maturation and signalling, and that genetically it acts upstream of both the membrane-bound form and the activated nuclear form of Notch. Our findings provide evidence for the existence of distinct processing sites or modifications in the extracellular domain of Notch. They also link the role of presenilin in Notch signalling to its effect on amyloid production in Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of Psn mutations by genomic DNA rescue experiments.
Figure 2: Notch-like phenotypes in Psn mutant imaginal wing discs.
Figure 3: Neural hyperplasia in Drosophila embryos lacking maternal presenilin protein.
Figure 4: Immunohistochemical analysis of the Notch protein distribution in Psn-mutant eye imaginal discs.
Figure 5: Western immunoblot analysis of Notch C-terminal fragments and Delta in Psn mutants.
Figure 6: Effects of truncated, constitutively activated forms of Notch on SOP determination in Psn mutant tissues.

Similar content being viewed by others

References

  1. Levitan, D. & Greenwald, I. Facilitation of lin-12-mediated signalling by SEL-12, a Caenorhabditis elegans S182 Alzheimer's disease gene. Nature 377, 351–354 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Levitan, D. & Greenwald, I. Effects of SEL-12 presenilin on LIN-12 localization and function in Caenorhabditis elegans. Development 125, 3599–3603 (1998).

    CAS  PubMed  Google Scholar 

  3. Wong, P. C. et al. Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 387, 288–292 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Haass, C. Presenilins: genes for life and death. Neuron 18, 687–690 (1997).

    Article  CAS  Google Scholar 

  5. Schweisguth, F. & Posakony, J. W. Suppressor of Hairless, the Drosophila homolog of the mouse recombination signal-binding protein gene, controls sensory organ cell fates. Development 120, 1433–1441 (1994).

    CAS  PubMed  Google Scholar 

  6. Fortini, M. E. & Artavanis-Tsakonas, S. The Suppressor of Hairless protein participates in Notch receptor signaling. Cell 79, 273–282 (1994).

    Article  CAS  Google Scholar 

  7. Diaz-Benjumea, F. J. & Cohen, S. M. Serrate signals through Notch to establish a Wingless-dependent organizer at the dorsal/ventral compartment boundary of the Drosophila wing. Development 121, 4215–4225 (1995).

    CAS  PubMed  Google Scholar 

  8. Kim, J., Irvine, K. D. & Carroll, S. B. Cell recognition, signal induction, and symmetrical gene activation at the dorsal–ventral boundary of the developing Drosophila wing. Cell 82, 795–802 (1995).

    Article  CAS  Google Scholar 

  9. Couso, J. P., Knust, E. & Martinez-Arias, A. Serrate and wingless cooperate to induce vestigial gene expression and wing formation in Drosophila. Curr. Biol. 5, 1437–1448 (1995).

    Article  CAS  Google Scholar 

  10. Rulifson, E. J. & Blair, S. S. Notch regulates wingless expression and is not required for reception of the paracrine wingless signal during wing margin neurogenesis in Drosophila. Development 121, 2813–2824 (1995).

    CAS  PubMed  Google Scholar 

  11. Kim, J. et al. Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene. Nature 382, 133–138 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Cubas, P., de Celis, J.-F., Campuzano, S. & Modelell, J. Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes Dev. 5, 996–1008 (1991).

    Article  CAS  Google Scholar 

  13. Dietrich, U. & Campos-Ortega, J. A. The expression of neurogenic loci in imaginal epidermal cells of Drosophila melanogaster. J. Neurogenet. 1, 315–332 (1984).

    Article  CAS  Google Scholar 

  14. Fehon, R. G., Johansen, K., Rebay, I. & Artavanis-Tsakonas, S. Complex cellular and subcellular regulation of Notch expression during embryonic and imaginal development of Drosophila: implications for Notch function. J. Cell. Biol. 113, 657–669 (1991).

    Article  CAS  Google Scholar 

  15. Kooh, P. J., Fehon, R. G. & Muskavitch, M. A. T. Implications of dynamic patterns of Delta and Notch expression for cellular interactions during Drosophila development. Development 117, 493–507 (1993).

    CAS  PubMed  Google Scholar 

  16. Blaumueller, C. M., Qi, H., Zagouras, P. & Artavanis-Tsakonas, S. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90, 281–291 (1997).

    Article  CAS  Google Scholar 

  17. Logeat, F. et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl Acad. Sci. USA 95, 8108–8112 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Chan, Y.-M. & Jan, Y. N. Roles for proteolysis and trafficking in Notch maturation and signal transduction. Cell 94, 423–426 (1996).

    Article  Google Scholar 

  19. Kopan, R., Schroeter, E. H., Weintraub, H. & Nye, J. S. Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc. Natl Acad. Sci. USA 93, 1683–1688 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Luo, B., Aster, J. C., Hasserjian, R. P., Kuo, F. & Sklar, J. Isolation and functional analysis of a cDNA for human Jagged2, a gene encoding a ligand for the Notch1 receptor. Mol. Cell. Biol. 17, 6057–6067 (1997).

    Article  CAS  Google Scholar 

  21. Kidd, S., Lieber, T. & Young, M. W. Ligand-induced cleavage and regulation of nuclear entry of Notch in Drosophila melanogaster embryos. Genes Dev. 12, 3728–3740 (1998).

    Article  CAS  Google Scholar 

  22. Pan, D. & Rubin, G. M. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90, 271–280 (1997).

    Article  CAS  Google Scholar 

  23. Struhl, G. & Adachi, A. Nuclear access and action of Notch in vivo. Cell 93, 649–660 (1998).

    Article  CAS  Google Scholar 

  24. Lecourtois, M. & Schweisguth, F. Indirect evidence for Delta-dependent intracellular processing of Notch in Drosophila embryos. Curr. Biol. 8, 771–774 (1998).

    Article  CAS  Google Scholar 

  25. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Fehon, R. G. et al. Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 61, 523–534 (1990).

    Article  CAS  Google Scholar 

  27. Struhl, G., Fitzgerald, K. & Greenwald, I. Intrinsic activity of the Lin-12 and Notch intracellular domains in vivo. Cell 74, 331–345 (1993).

    Article  CAS  Google Scholar 

  28. Rebay, I., Fehon, R. G. & Artavanis-Tsakonas, S. Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor. Cell 74, 319–329 (1993).

    Article  CAS  Google Scholar 

  29. Selkoe, D. J. Amyloid β-protein and the genetics of Alzheimer's disease. J. Biol. Chem. 271, 18295–18298 (1996).

    Article  CAS  Google Scholar 

  30. De Strooper, B. et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387–390 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. V. Roussakova for technical assistance with genetic screening and Drosophila microinjection; F. Schweisguth, G. Struhl, S. Artavanis-Tsakonas, D. Pan and R. Finkelstein for fly stocks; and S. Artavanis-Tsakonas, G. M. Rubin, Y. N. Jan and T. A. Jongens for antibodies. This work was supported by the NIH, the Life and Health Insurance Medical Research Fund, and the Alzheimer's Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Fortini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, Y., Lukinova, N. & Fortini, M. Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature 398, 525–529 (1999). https://doi.org/10.1038/19096

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19096

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing