Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter

Abstract

The detection of organic molecules is important in many areas, including medicine, environmental monitoring and defence1,5. Stochastic sensing is an approach that relies on the observation of individual binding events between analyte molecules and a single receptor6. Engineered transmembrane protein pores are promising sensor elements for stochastic detection6, and in their simplest manifestation they produce a fluctuating binary (‘on/off’) response in the transmembrane electrical current. The frequency of occurrence of the fluctuations reveals the concentration of the analyte, and its identity can be deduced from the characteristic magnitude and/or duration of the fluctuations. Genetically engineered versions of the bacterial pore-forming protein α-haemolysin have been used to identify and quantify divalent metal ions in solution6. But it is not immediately obvious how versatile binding sites for organic ligands might be obtained by engineering of the pore structure. Here we show that stochastic sensing of organic molecules can be procured from α-haemolysin by equipping the channel with an internal, non-covalently bound molecular ‘adapter’ which mediates channel blocking by the analyte. We use cyclodextrins as the adapters because these fit comfortably inside the pore and present a hydrophobic cavity suitable for binding a variety of organic analytes. Moreover, a single sensing element of this sort can be used to analyse a mixture of organic molecules with different binding characteristics. We envisage the use of other adapters, so that the pore could be ‘programmed’ for a range of sensing functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bilayer recordings showing the interaction of a single α-haemolysin (αHL) pore with β-cyclodextrin (βCD) and.
Figure 2: Molecular graphics representation of the interaction between αHL and βCD.
Figure 3: A kinetic scheme for the interactions between α-haemolysin (αHL), β-cyclodextrin (βCD) and guests.
Figure 4: Response of αHL·βCD at different analyte concentrations.
Figure 5: Analysis of drug molecules by stochastic sensing with αHL and a βCD or γCD adapter.

Similar content being viewed by others

References

  1. Dickinson, T. A., White, J., Kauer, J. S. & White, D. R. Achemical-detecting system based on a cross-reactive optical sensor array. Nature 382, 687–700 (1996).

    Article  ADS  Google Scholar 

  2. Lonergan, M. C. et al. Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors. Chem. Mat. 8, 2298 –2312 (1996).

    Article  CAS  Google Scholar 

  3. Hellinga, H. W. & Marvin, J. S. Protein engineering and the development of generic biosensors. Trends Biotechnol. 16, 183–189 (1998).

    Article  CAS  Google Scholar 

  4. Czarnik, A. W. Asense for landmines. Nature 394, 417– 418 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Crooks, R. M. & Ricco, A. J. Special issue on chemical sensors. Acc. Chem. Res. 31, 199– 324 (1998).

    Article  Google Scholar 

  6. Braha, O. et al. Designed protein pores as components for biosensors. Chem. Biol. 4, 497–505 ( 1997).

    Article  CAS  Google Scholar 

  7. Gouaux, E. α-Hemolysin from Staphylococcus aureus : an archetype of β-barrel, channel-forming toxins. J. Struct. Biol. 121, 110–122 (1998).

    Article  CAS  Google Scholar 

  8. Song, L. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859– 1865 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Krasilnikov, O. V., Sabirov, R. Z., Ternovsky, V. I., Merzliak, P. G. & Muratkhodjaev, J. N. Asimple method for the determination of the pore radius of ions channels in planar lipid bilayer membranes. FEMS Microbiol. Immunol. 105 , 93–100 (1992).

    Article  Google Scholar 

  10. Bezrukov, S. M., Vodyanoy, I., Brutyan, R. A. & Kasianowicz, J. J. Dynamics and free energy of polymer partitioning into a nanoscale pore. Macromolecules 29, 8517–8522 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770– 13773 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Rekharsky, M. V. & Inoue, Y. Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875– 1917 (1998).

    Article  CAS  Google Scholar 

  13. Colquhoun, D. & Hawkes, A. G. On the stochastic properties of bursts of single ion channel openings and of clusters of bursts. Phil. Trans. R. Soc. Lond. B 300, 1– 59 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Inoue, Y. et al. Thermodynamics of molecular recognition by cyclodextrins. 1. Calorimetric titration of inclusion complexation of naphthalenesulfonates with α-, β-, and γ-cyclodextrins: enthalphy–entropy compensation. J. Am. Chem. Soc. 115, 475 –481 (1993).

    Article  CAS  Google Scholar 

  15. Lucchesi, K., Ravindran, A., Young, H. & Moczydlowski, E. Analysis of the blocking activity of charybdotoxin homologs and iodinated derivatives against Ca2+-activated K+ channels. J. Membr. Biol. 109, 269–281 (1989).

    Article  CAS  Google Scholar 

  16. Bianchet, M. A. et al. The three-dimensional structure of bovine odorant binding protein and its mechanism of odor recognition. Nature Struct. Biol. 3, 934–939 ( 1996).

    Article  CAS  Google Scholar 

  17. Chen, H., Weiner, W. S. & Hamilton, A. D. Recognition of neutral species with synthetic receptors. Curr. Opin. Chem. Biol. 1, 458– 466 (1997).

    Article  CAS  Google Scholar 

  18. Arduini, A., Casnati, A., Pochini, A. & Ungaro, R. Recognition of cationic species with synthetic receptors. Curr. Opin. Chem. Biol. 1, 467–474 (1997).

    Article  CAS  Google Scholar 

  19. Beer, P. D. & Schmitt, P. Molecular recognition of anions by synthetic receptors. Curr. Opin. Chem. Biol. 1, 475–482 (1997).

    Article  CAS  Google Scholar 

  20. Bayley, H. Building doors into cells. Sci. Am. 277, (Sept.) 62–67 (1997).

    Article  CAS  Google Scholar 

  21. Hartgerink, J. D., Clark, T. D. & Ghadiri, M. R. Peptide nanotubes and beyond. Chem. Eur. J. 4, 1367–1372 ( 1998).

    Article  CAS  Google Scholar 

  22. Schmid, B., Maveyraud, L., Kromer, M. & Schulz, G. E. Porin mutants with new channel properties. Protein Sci. 7, 1603–1611 (1998).

    Article  CAS  Google Scholar 

  23. Lu, H. P., Xun, L. & Xie, X. S. Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Oberhauser, A. F., Marszalek, P. E., Erickson, H. P. & Fernandez, J. M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 ( 1998).

    Article  ADS  CAS  Google Scholar 

  25. Cornell, B. A. et al. Abiosensor that uses ion-channel switches. Nature 387, 580–583 ( 1997).

    Article  ADS  CAS  Google Scholar 

  26. Bhakdi, S., Füssle, R. & Tranum-Jensen, J. Staphylococcal α-toxin: oligomerization of hydrophilic monomers to form amphiphilic hexamers induced through contact with deoxycholate micelles. Proc. Natl Acad. Sci. USA 78, 5475–5479 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Walker, B. J., Krishnasastry, M., Zorn, L., Kasianowicz, J. J. & Bayley, H. Functional expression of the α-hemolysin of Staphylococcus aureus in intact Escherichia coli and in cell lysates. J. Biol. Chem. 267, 10902–10909 (1992).

    CAS  PubMed  Google Scholar 

  28. Montal, M. & Mueller, P. Formation of bimolecular membranes from lipid monolayers and study of their electrical properties. Proc. Natl Acad. Sci. USA 69, 3561– 3566 (1972).

    Article  ADS  CAS  Google Scholar 

  29. Christopher, J. A. SPOCK: The Structural Properties Observation and Calculation Kit (Program Manual) (Center for Macromolecular Design, Texas A&M Univ., College Station, 1998).

Download references

Acknowledgements

This work was supported by DARPA, DOE and ONR. We thank E. Gouaux for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Orit Braha or Hagan Bayley.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, LQ., Braha, O., Conlan, S. et al. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398, 686–690 (1999). https://doi.org/10.1038/19491

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19491

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing