Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modelling T-cell memory by genetic marking of memory T cells in vivo

Abstract

Immunological memory is the ability of the immune system to respond with enhanced vigour to pathogens that have been encountered in the past. Following infection or immunization, most effector T cells undergo apoptotic cell death, but a small fraction of these cells, proportional to the early antigen load and initial clonal burst size1, persist in the host as a stable pool of memory T cells2,3,4,5,6,7. The existence of immunological memory has been recognized for over 2,000 years, but our understanding of this phenomenon is limited, primarily because memory lymphocytes cannot be unequivocally identified as they lack specific, permanent markers. Here we have developed a transgenic mouse model system whereby memory T cells and their precursors can be irreversibly marked with a reporter gene and thus can be unambiguously identified. Adoptive transfer of marked CD8+ T cells specific for lymphocytic choriomeningitis virus protected naive recipients following viral challenge, demonstrating that we have marked memory T cells. We also show that cytotoxic effector lymphocytes that develop into memory T cells can be identified in the primary response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transgenic constructs used.
Figure 2: PLAP expression occurs only after Cre-mediated recombination.
Figure 3: Expression of granzyme-B-promoter-driven Cre recombinase in activated T cells.
Figure 4: PLAP expression in CD4+ T cells responding to KLH in vivo.
Figure 5: CD8+ T-cell response to LCMV infection in CD2–STOP–PLAP × granzyme-B–Cre mice.
Figure 6: PLAP+ CD8+ T cells are LCMV-specific.
Figure 7: Adoptive transfer of CD8+ T cell memory.
Figure 8: Memory T cells can be distinguished from recently activated T cells.

Similar content being viewed by others

References

  1. Hou, S., Hyland, L., Ryan, K. W., Portner, A. & Doherty, P. C. Virus-specific CD8+ T-cell memory determined by cloning burst size. Nature 369, 652–654 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Welsh, R. M. et al. Alpha beta and gamma delta T-cell networks and their roles in natural resistance to viral infections. Immuno. Rev. 159, 79–93 (1997).

    Article  CAS  Google Scholar 

  3. Kundig, T. M. et al. On T cell memory: arguments for antigen dependence. Immun. Rev. 150, 63–90 (1996).

    Article  CAS  Google Scholar 

  4. Mullbacher, A. & Flynn, K. Aspects of cytotoxic T cell memory. Immun. Rev. 150, 113–127 (1996).

    Article  CAS  Google Scholar 

  5. Tough, D. F. & Sprent, J. Lifespan of lymphocytes. Immun. Res. 14, 1–12 (1995).

    Article  CAS  Google Scholar 

  6. Swain, S. L. et al. From naive to memory T cells. Immun. Rev. 150, 143–167 (1996).

    Article  CAS  Google Scholar 

  7. Doherty, P. C., Topham, D. J. & Tripp, R. A. Establishment and persistence of virus-specific CD4+ and CD8+ T cell memory. Immun. Rev. 150, 23–44 (1996).

    Article  CAS  Google Scholar 

  8. Lasko, M. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl Acad. Sci. USA 89, 6232–6236 (1992).

    Article  ADS  Google Scholar 

  9. Cepko, C., Ryder, E. F., Austin, C. P., Walsh, C. & Fekete, D. M. Lineage analysis using retrovirus vectors. Methods Enzymol. 254, 387–419 (1995).

    Article  CAS  Google Scholar 

  10. Hanson, R. D., Sclar, G. M., Kanagawa, O. & Ley, T. J. The 5′-flanking region of the human CGL-1/granzyme B gene targets expression of a reporter gene to activated T-lymphocytes in transgenic mice. J. Biol. Chem. 266, 24433–24438 (1991).

    CAS  PubMed  Google Scholar 

  11. Zhumabekov, T., Corbella, P., Tolaini, M. & Kioussis, D. Improved version of a human CD2 minigene based vector for T cell-specific expression in transgenic mice. J. Biol. Chem. 266, 24433–24438 (1991).

    Google Scholar 

  12. Williams, A. F., Barclay, A. N., Clark, S. J., Paterson, D. J. & Willis, A. C. Similarities in sequences and cellular expression between rat CD2 and CD4 antigens. J. Exp. Med. 165, 368–380 (1987).

    Article  CAS  Google Scholar 

  13. Wotton, D., Flanagan, B. F. & Owen, M. J. Chromatin configuration of the human CD2 gene locus during T-cell development. Proc. Natl Acad. Sci. USA 86, 4195–4199 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Nagy, A. et al. Multipurpose gene alterations from a single targeting vector: dissecting the role of N-myc in development. Curr. Biol. 8, 661–664 (1998).

    Article  CAS  Google Scholar 

  15. Castan, J., Tenner, R. K., Racz, P., Fleischer, B. & Broker, B. M. Accumulation of CTLA-4 expressing T lymphocytes in the germinal centres of human lymphoid tissues. Immunology 90, 265–271 (1997).

    Article  CAS  Google Scholar 

  16. Zheng, B., Han, S., Zhu, Q., Goldsby, R. & Kelsoe, G. Alternative pathways for the selection of antigen-specific peripheral T cells. Nature 384, 263–266 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Fuller, K. A., Kanagawa, O. & Nahm, M. H. Tcells within germinal centers are specific for the immunizing antigen. J. Immunol. 151, 4505–4512 (1993).

    CAS  PubMed  Google Scholar 

  18. Gulbranson, J. A. & MacLennan, I. Sequential antigen-specific growth of T cells in the T zones and follicles in response to pigeon cytochrome c. Eur. J. Immunol. 26, 1830–1837 (1996).

    Article  Google Scholar 

  19. Ahmed, R., Byrne, J. A. & Oldstone, M. B. Virus specificity of cytotoxic T lymphocytes generated during acute lymphocytic choriomeningitis virus infection: role of the H-2 region in determining cross-reactivity for different lymphocytic choriomeningitis virus strains. J. Virol. 51, 34–41 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jamieson, B. D. & Ahmed, R. Tcell memory. Long-term persistence of virus-specific cytotoxic T cells. J. Exp. Med. 169, 1993–2005 (1989).

    Article  CAS  Google Scholar 

  21. Selin, L. K., Nahill, S. R. & Welsh, R. M. Cross-reactivities in memory cytotoxic T lymphocyte recognition of heterologous viruses. J. Exp. Med. 179, 1933–1943 (1994).

    Article  CAS  Google Scholar 

  22. Zimmerman, C., Brduscha, R. K., Blaser, C., Zinkernagel, R. M. & Pircher, H. Visualization, characterization, and turnover of CD8+ memory T cells in virus-infected hosts. J. Exp. Med. 183, 1367–1375 (1996).

    Article  CAS  Google Scholar 

  23. Nahill, S. R. & Welsh, R. M. High frequency of cross-reactive cytotoxic T lymphocytes elicited during the virus-induced polyclonal cytotoxic T lymphocyte response. J. Exp. Med. 177, 317–327 (1993).

    Article  CAS  Google Scholar 

  24. Yang, H. Y., Dundon, P. L., Nahill, S. R. & Welsh, R. M. Virus-induced polyclonal cytotoxic T lymphocyte stimulation. J. Immunol. 142, 1710–1718 (1989).

    CAS  PubMed  Google Scholar 

  25. Lau, L. L., Jamieson, B. D., Somasundaram, T. & Ahmed, R. Cytotoxic T-cell memory without antigen. Nature 369, 648–652 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Zinkernagel, R. M. et al. On immunological memory. Annu. Rev. Immunol. 14, 333–367 (1996).

    Article  CAS  Google Scholar 

  28. Murali, K. K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    Article  Google Scholar 

  29. Butz, E. A. & Bevan, M. J. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8, 167–175 (1998).

    Article  CAS  Google Scholar 

  30. Ahmed, R., Salmi, A., Butler, L. D., Chiller, J. M. & Oldstone, M. B. A. Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice: role in suppression of cytotoxic T lymphocyte response and viral persistence. J. Exp. Med. 60, 521–540 (1984).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Roman, I. Stancovski, S. Cherry, K. Alexandroplous, M. Scott, G.Kelsoe, R. Welsh, L. Selin, R. Ahmed and members of the Baltimore laboratory for useful discussions. We also thank T. Ley for p687 plasmid; R. Welsh, R. Ahmed and J. Carlos de la Torre for LCM viral stocks; D. Kioussis for the VahCD2 transgenic construct; M. Brasch for pBS185 and pBS302 plasmids; and A.Nagy for the hCMV-Cre transgenic mice. J.J. Thanks H. Rayburn and W. Sha for teaching him pronuclear injection and transgenesis, and M. Scott for help with adoptive transfers. J.J. was a recipient of a postdoctoral fellowship from the Helen Hay Whitney foundation and is currently a special fellow of the Leukemia Society of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Baltimore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, J., Baltimore, D. Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature 399, 593–597 (1999). https://doi.org/10.1038/21208

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21208

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing