Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Aspects of Similarity for Air-entraining Water Flows

Abstract

AIR is often entrained naturally by flowing water—for example, in the plunging waters of mountain streams, waterfalls, bores, breakers, hydraulic jumps and subterranean siphons—and, in these and similar situations, appears generally to be beneficial. The quality of the water, certainly, is improved by air entrainment and very few hazards tend to arise with these naturally occurring flows.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hall, L. S., Trans. Amer. Soc. Civil Eng., 108, 1393 (1943).

    Google Scholar 

  2. Peterka, A. J., Trans. Amer. Soc. Civil Eng., 121, 385 (1956).

    Google Scholar 

  3. Stevens, J. C., Trans. Amer. Soc. Civil Eng., 104, 1785 (1939).

    Google Scholar 

  4. Campbell, F. B., and Guyton, B., Proc. Minnesota Intern. Hydraulics Conv., 529 (1953).

  5. Hydraulics Research Station, Wallingford, Rep. No. Ex. 264 (August 1965).

  6. Ford, S. E., and Elliott, S. G., Proc. Inst. Civil Eng., 32, 255 (1965); ibid., 35, 342 (1966).

    Google Scholar 

  7. Camichel, C., and Escande, L., Similitude Hydrodynamique et Technique des Modèles Réduits (Publications Scientifiques et Techniques du Ministère de l'Air, Paris, No. 127, 1938).

    Google Scholar 

  8. Escande, L., Le Génie Civil., 115, 429 (1939).

    Google Scholar 

  9. Denny, D. F., and Young, G. A. J., Seventh Gong. Intern. Assoc. Hydraulic Res. (1957).

  10. Kenn, M. J., J. Inst. Water Eng., 19, 231 (1965).

    Google Scholar 

  11. Zanker, K. J., Inst. Civil Eng., INformation Dicussion Meeting, “Prevention of Air-entrainment in Vortices” (1966).

  12. Kenn, M. J., Proc. Geol. Assoc. (London), 76, 21 (1965).

    Article  Google Scholar 

  13. Kruszewski, S., J. Soc. Glass Technol., 41, 259T (1957).

    Google Scholar 

  14. Dodge, R. A., and Thompson, M. J., Fluid Mechanics, 433 (McGraw-Hill Book Co., Inc., 1937).

    MATH  Google Scholar 

  15. Taylor, G. I., Proc. Roy. Soc., A, 146, 501 (1934).

    Article  ADS  CAS  Google Scholar 

  16. Andreasen, A. H. M., J. Soc. Glass Technol., 33, 163 (1949).

    Google Scholar 

  17. Taylor, G. I., J. Fluid Mechanics, 16, 595 (1963).

    Article  ADS  Google Scholar 

  18. McMillan, H. K., Fontaine, W. E., and Chaddock, J. B., Amer. Soc. Mech. Eng., 64–WA/FE–4: (November 1964).

  19. Giffen, E., and Muraszew, A., The Atomisation of Liquid Fuels, 124 (Chapman and Hall, Ltd., 1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KENN, M., ZANKER, K. Aspects of Similarity for Air-entraining Water Flows. Nature 213, 59–60 (1967). https://doi.org/10.1038/213059a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/213059a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing