Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF

Abstract

The Wnt signalling pathway regulates many developmental processes through a complex of β-catenin and the T-cell factor/lymphoid enhancer factor (TCF/LEF) family of high-mobility-group transcription factors1,2,3,4,5,. Wnt stabilizes cytosolic β-catenin, which then binds to TCF and activates gene transcription. This signalling cascade is conserved in vertebrates, Drosophila and Caenorhabditis elegans. In C. elegans, the proteins MOM-4 and LIT-1 regulate Wnt signalling to polarize responding cells during embryogenesis6. MOM-4 and LIT-1 are homologous to TAK1 (a kinase activated by transforming growth factor-β) mitogen-activated protein-kinase-kinase kinase (MAP3K)7 and MAP kinase (MAPK)-related NEMO-like kinase (NLK)8,9, respectively, in mammalian cells. These results raise the possibility that TAK1 and NLK are also involved in Wnt signalling in mammalian cells. Here we show that TAK1 activation stimulates NLK activity and downregulates transcriptional activation mediated by β-catenin and TCF. Injection of NLK suppresses the induction of axis duplication by microinjected β-catenin in Xenopus embryos. NLK phosphorylates TCF/LEF factors and inhibits the interaction of the β-catenin–TCF complex with DNA. Thus, the TAK1–NLK–MAPK-like pathway negatively regulates the Wnt signalling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of TAK1 and NLK on β-catenin–TCF-regulated transcription.
Figure 2: Effects of NLK on axis formation.
Figure 3: Kinase activity of NLK.
Figure 4: Interaction between TCF/LEF and the TAK1-NLK pathway.
Figure 5: Effect of NLK on a β-catenin–TCF-4 complex.
Figure 6: Model for interaction between the Wnt and TAK1/MOM-4–NLK/LIT-1 pathways.

Similar content being viewed by others

References

  1. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  Google Scholar 

  3. Brunner, E., Peter, O., Schweizer, L. & Basler, K. pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385, 829–833 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Riese, J. et al. LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell 88, 777–787 (1997).

    Article  CAS  Google Scholar 

  5. van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997).

    Article  CAS  Google Scholar 

  6. Meneghini, M. D. et al. MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature 399, 793–797 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Yamaguchi, K. et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 270, 2008–2011 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Choi, K. W. & Benzer, S. Rotation of photoreceptor clusters in the developing Drosophila eye requires the nemo gene. Cell 78, 125–136 (1994).

    Article  CAS  Google Scholar 

  9. Brott, B. K., Pinsky, B. A. & Erikson, R. L. Nlk is a murine protein kinase related to Erk/MAP kinases and localized in the nucleus. Proc. Natl Acad. Sci. USA 95, 963–968 (1998).

    Article  ADS  CAS  Google Scholar 

  10. van de Wetering, M., Oosterwegel, M., Doojies, D. & Clevers, H. Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J. 10, 123–132 (1991).

    Article  CAS  Google Scholar 

  11. van de Wetering, M., Castrop, J., Korinek, V. & Clevers, H. Extensive alternative splicing and dual promoter usage generate Tcf-1 protein isoforms with differential transcription control properties. Mol. Cell. Biol. 16, 745–752 (1996).

    Article  CAS  Google Scholar 

  12. Aberle, H. et al. β-Catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16, 3797–3804 (1997).

    Article  CAS  Google Scholar 

  13. Shibuya, H. et al. TAB1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science 272, 1179–1182 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Miller, J. R. & Moon, R. T. Signal transduction through β-catenin and specification of cell fate during embryogenesis. Genes Dev. 10, 2527–2539 (1996).

    Article  CAS  Google Scholar 

  15. Cardigan, K. M. & Nusse, R. Wnt signalling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  Google Scholar 

  16. Funayama, N., Fagotto, F., McCrea, P. & Gumbiner, B. M. Embryonic axis induction by the armadillo repeat domain of β-catenin: evidence for intracellular signaling. J. Cell Biol. 128, 959–968 (1995).

    Article  CAS  Google Scholar 

  17. Lemaire, P., Garrett, N. & Gurdon, J. B. Expression cloning of siamois, a Xenopus homeobox gene expressed in dorsal vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81, 85–94 (1995).

    Article  CAS  Google Scholar 

  18. Brannon, M. et al. Aβ-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev. 11, 2359–2370 (1997).

    Article  CAS  Google Scholar 

  19. Laurent, M. N. et al. The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann's organizer. Development 124, 4905–4916 (1997).

    CAS  PubMed  Google Scholar 

  20. Waltzer, L. & Bienz, M. Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature 395, 521–525 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Cavallo, R. A. et al. ADrosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395, 604–608 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Roose, J. et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395, 608–612 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Rocheleau, C. E. et al. Wnt signaling and an APC related gene specify endoderm in early C. elegans embryos. Cell 90, 707–717 (1997).

    Article  CAS  Google Scholar 

  24. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  Google Scholar 

  25. Morin, P. J. et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in b-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  Google Scholar 

  26. Thorpe, C. J., Schlesinger, A., Carter, J. C. & Bowerman, B. Wnt signaling polarizes in early C. elegans blastomere to distinguish endoderm from mesoderm. Cell 90, 695–705 (1997).

    Article  CAS  Google Scholar 

  27. Lin, R., Hill, R. J. & Priess, J. R. POP-1 and anterior–posterior fate decisions in C. elegans embryos. Cell 92, 229–239 (1998).

    Article  CAS  Google Scholar 

  28. Rupp, R. A., Snider, H. & Weintraub, H. Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev. 8, 1311–1323 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Akiyama, B. Brott, and A. Kikuchi for materials; E. Nishida for helpful discussions; and M. Lamphier and R. Ruggieri for critical reading of the manuscript. Supported by special grants for CREST and Advanced Research on Cancer from the Ministry of Education, Culture and Science of Japan, and HFSP (K.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiro Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishitani, T., Ninomiya-Tsuji, J., Nagai, Si. et al. The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature 399, 798–802 (1999). https://doi.org/10.1038/21674

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21674

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing