Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters

Abstract

The controlled fabrication of very small structures at scales beyond the current limits of lithographic techniques is a technological goal of great practical and fundamental interest. Important progress has been made over the past few years in the preparation of ordered ensembles of metal and semiconductor nanocrystals1,2,3,4,5,6,7. For example, monodisperse fractions of thiol-stabilized gold nanoparticles8 have been crystallized into two- and three-dimensional superlattices5. Metal particles stabilized by quaternary ammonium salts can also self-assemble into superlattice structures9,10. Gold particle preparations with quite broad (polydisperse) size distributions also show some tendency to form ordered structures by a process involving spontaneous size segregation11,12. Here we report that alkanethiol-derivatized gold nanocrystals of different, well defined sizes organize themselves spontaneously into complex, ordered two-dimensional arrays that are structurally related to both colloidal crystals and alloys between metals of different atomic radii. We observe three types of organization: first, different-sized particles intimately mixed, forming an ordered bimodal array (Fig. 1); second, size-segregated regions, each containing hexagonal-close-packed monodisperse particles (Fig. 2); and third, a structure in which particles of several different sizes occupy random positions in a pseudo-hexagonal lattice (Fig. 3).

Shown are electron micrographs at low (a) and higher (b) magnification. c, The low-angle superlattice electron diffraction pattern obtained from this bimodal raft structure.

A ratio is 0.47. In this case, RA = 4.5 ± 0.7 nm and RB = 9.6 ± 1.5 nm.

Electron micrograph of a ‘random alloy’ of Au nanoparticles obtained for an RB/RA ratio greater than 0.85.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 4: An electron micrograph of a raft of bimodal Au nanoparticles of the type shown in Fig. 1b after storage for two months under ambient conditions.

Similar content being viewed by others

References

  1. Giersig, M. & Mulvaney, P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9, 3408–3413 (1993).

    Article  CAS  Google Scholar 

  2. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. ADNA based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Brust, M., Bethell, D., Schiffrin, D. J. & Kiely, C. J. Novel gold-dithiol networks with non-metallic electronic properties. Adv. Mater. 7, 795–797 (1995).

    Article  CAS  Google Scholar 

  4. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organisation of CdSe nanocrystallites into 3-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Whetten, R. L. et al. Nanocrystal gold molecules. Adv. Mater. 8, 428–433 (1996).

    Article  CAS  Google Scholar 

  6. Motte, L., Billoudet, F., Lacaze, E., Douin, J. & Pileni, M. P. Self-organisation into 2D and 3D superlattices of nanosized particles differing by their size. J. Phys. Chem. B 101, 138–144 (1997).

    Article  CAS  Google Scholar 

  7. Pileni, M. P. Nanosized particles made into colloidal assemblies. Langmuir 13, 3266–3276 (1997).

    Article  CAS  Google Scholar 

  8. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. & Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two phase liquid-liquid system. J. Chem. Soc. Commun. 801–802 (1994).

  9. Reetz, M. T., Winter, M. & Tesche, B. Self assembly of tetra-alkylammonium salt-stabilised giant palladium clusters on surfaces. Chem. Commun. 147–148 (1997).

  10. Fink, J., Kiely, C. J., Bethell, D. & Schiffrin, D. J. Self-organisation of nanosized Au particles. Chem. Mater. 10, 922–926 (1998).

    Article  CAS  Google Scholar 

  11. Ohara, P. C., Leff, D. V., Heath, J. R. & Gelbart, W. M. Crystallisation of opals from polydisperse nanoparticles. Phys. Rev. Lett. 75, 3466–3469 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Murthy, S., Wang, Z. L. & Whetten, R. L. Thin films of thiol-derivatised gold nanocrystals. Phil. Mag. Lett. 75, 321–327 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Luedtke, W. D. & Landman, U. Structure, dynamics and thermodynamics of passivated Au nanocrystallites and their assemblies. J. Phys. Chem. 100, 13323–13329 (1996).

    Article  CAS  Google Scholar 

  14. Terrill, R. H. et al. Monolayers in 3D NMR SAXS thermal and electron hopping studies of alkanethiol stabilised Au clusters. J. Am. Chem. Soc. 117, 12537–12548 (1995).

    Article  CAS  Google Scholar 

  15. Badia, A. et al. Self-assembled monolayers on gold nanoparticles. Chem. Eur. J. 96, 359–36 (1996).

    Article  Google Scholar 

  16. Wang, Z. L., Harfenist, S. A., Whetten, R. L., Bentley, J. & Evans, N. D. Bundling and interdigitation of adsorbed thiolate groups in self assembled nanocrystal lattices. J. Phys. Chem. 102, 3068–3072 (1998).

    Article  CAS  Google Scholar 

  17. Wang, Z. L. Structural analysis of self-assembling nanocrystal superlattices. Adv. Mater. 10, 13–30 (1998).

    Article  Google Scholar 

  18. Laves, F. The Theory of Alloy Phases 124–199 (Am. Society for Metals, Cleveland, Ohio, (1956)).

    Google Scholar 

  19. Sanders, J. V. & Murray, M. J. Ordered arrangements of spheres of two different sizes in opals. Nature 275, 201–202 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Sanders, J. V. & Murray, M. J. Close-packed structures of spheres of two different sizes I; Observations on natural opal. Phil. Mag. A 42, 705–720 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Yoshimura, S. & Haschisu, S. Order formation in binary mixtures of monodisperse lattices. Prog. Colloid Polym. Sci. 68, 59–70 (1983).

    Article  CAS  Google Scholar 

  22. Haschisu, S. & Yoshimura, S. Optical demonstration of crystalline superstructures in binary mixtures of latex globules. Nature 283, 188–189 (1980).

    Article  ADS  Google Scholar 

  23. Bartlett, P., Ottewill, R. H. & Pusey, P. N. Superlattice formation in binary-mixtures of hard sphere colloids. Phys. Rev. Lett. 68, 3801–3804 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Murray, M. J. & Sanders, J. V. Close-packed structures of spheres of two different sizes II; the packing densities of likely arrangements. Phil. Mag. A 42, 721–740 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Eldridge, M. D., Madden, P. A. & Frenkel, D. Entropy driven formation of a superlattice in a hard-sphere binary mixture. Nature 365, 35–37 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Hume-Rothery, W., Smallman, R. E. & Haworth, C. W. The Structure of Metals and Alloys (Metals and Metallurgy Trust, London, (1969)).

    Google Scholar 

  27. Cleveland, C. L., Landman, U., Shafigullin, M. N., Stephens, P. W. & Whetten, R. L. Structural evolution of larger gold clusters. Z. Phys. D 40, 503–508 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Hostetler, M. et al. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2nm; monolayer properties as a function of core size. Langmuir 14, 17–30 (1998).

    Article  CAS  Google Scholar 

  29. Herring, C. Effect of change of scale on sintering phenomena. J. Appl. Phys. 21, 301–303 (1950).

    Article  ADS  CAS  Google Scholar 

  30. Feldheim, L. & Keating, C. D. Self-assembly of single electron transistors and related devices. Chem. Soc. Rev. 27, 1–12 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Carol Kiely for comments. This work was supported by the EPSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Kiely.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiely, C., Fink, J., Brust, M. et al. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396, 444–446 (1998). https://doi.org/10.1038/24808

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24808

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing