Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct identification and characterisation of β-adrenergic receptors in rat brain

Abstract

MODULATION of cellular function by the autonomic nervous system is accomplished, at least in part, by the stimulation of β-adrenergic receptors by catecholamines at neuroeffector junctions1. Activation of these receptors results in stimulation of adenylate cyclase with increased intracellular levels of cyclic AMP. The β-adrenergic receptors of a variety of non-neural tissues have been characterised indirectly by measurement of altered adenylate cyclase activity or of intracellular cyclic AMP in response to β-adrenergic agonists and antagonists. Direct characterisation of the β-adrenergic receptors in avian2,3 and amphibian4 erythrocytes and in canine heart5 has been accomplished by binding assays using radioactive β-adrenergic antagonists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Robison, G. A., Butcher, R. W., and Sutherland, E. W., in Cyclic AMP, 145–231 (Academic, New York, 1971).

    Book  Google Scholar 

  2. Levitzki, A., Atlas, D., and Steer, M. L., Proc. natn. Acad. Sci. U.S.A., 71, 2773–2776 (1974).

    Article  ADS  CAS  Google Scholar 

  3. Aurbach, G., et al. Science, 186, 1223–1224 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Mukherjee, C., Caron, M., Coverstone, M., and Lefkowitz, R. J., J. biol. Chem., 250, 4869–4876 (1975).

    CAS  PubMed  Google Scholar 

  5. Alexander, R. W., Williams, L. T., and Lefkowitz, R. J., Proc. natn. Acad. Sci. U.S.A., 72, 1564–1568 (1975).

    Article  ADS  CAS  Google Scholar 

  6. Moskowitz, M., and Wurtman, R., New Engl. J. Med., 293, 274–280 (1975).

    Article  CAS  PubMed  Google Scholar 

  7. Kebabian, J. W., Petzold, G., and Greengard, P., Proc. natn. Acad. Sci. U.S.A., 69, 2145–2149 (1972).

    Article  ADS  CAS  Google Scholar 

  8. Iverson, L. L., Science, 188, 1084–1089 (1975).

    Article  ADS  Google Scholar 

  9. Kakiuchi, S., and Rall, T., Molec. Pharmac., 4, 367–378 (1968).

    CAS  Google Scholar 

  10. Hoffer, B. J., Siggins, G. R., and Bloom, F. Brain Res., 25, 523–534 (1971).

    Article  CAS  PubMed  Google Scholar 

  11. Siggins, G. R., Hoffer, B. J., and Bloom, F., Brain Res., 25, 535–553 (1971).

    Article  CAS  PubMed  Google Scholar 

  12. Stone, T. W., Taylor, D. A., and Bloom, F. E., Science, 187, 845–847 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Drummond, G., Severson, D., and Duncan, L., J. biol. Chem., 246, 4166–4173 (1971).

    CAS  PubMed  Google Scholar 

  14. Cheng, Y., and Prusoff, W., Biochem. Pharmac., 22, 3099–3108 (1973).

    Article  CAS  Google Scholar 

  15. Lewald, J., and Rodbard, D., in Steroid Assay by Protein Binding, Karolmska Symposium on Research methods in Reproductive Endocrinology, 98 and 302 (1970).

    Google Scholar 

  16. Hoffer, B. J., Siggins, G., Oliver, A., and Bloom, F. Ann. N.Y. Acad. Sci., 185, 531–549 (1971).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Segal, M., and Bloom, F., Brain Res., 72, 79–97 (1974).

    Article  CAS  PubMed  Google Scholar 

  18. Williams, L. T., Snyderman, R., and Lefkowitz, R. J., J. clin. Invest. (in the press).

  19. Lefkowitz, R. J., Circulation, 49, 783–786 (1974).

    Article  CAS  PubMed  Google Scholar 

  20. Moran, N. C., and Perkins, M. J., J. Pharmac. exp. Ther., 131, 192 (1961).

    Google Scholar 

  21. Vatner, D., and Lefkowitz, R. J. Molec. Pharmac., 10, 450–456 (1974).

    CAS  Google Scholar 

  22. Davoren, P. R., and Sutherland, E. W., J. biol. Chem., 238, 3009–3015 (1963).

    CAS  PubMed  Google Scholar 

  23. Weiss, B., and Costa, E., J. Pharmac. exp. Ther., 161, 310–319 (1968).

    CAS  Google Scholar 

  24. Palmer, G., Sulser, F., and Robison, G., Neuoropharmacology, 12, 327–337 (1973).

    Article  CAS  Google Scholar 

  25. Snyder, S., Biochem. Pharmac., 24, 1371–1375 (1975).

    Article  CAS  Google Scholar 

  26. Gilman, A. G., and Nirenberg, M., Proc. natn. Acad. Sci. U.S.A., 68, 2165–2168 (1971).

    Article  ADS  CAS  Google Scholar 

  27. Clark, R. B., and Perkins, J. P., Proc. natn. Acad. Sci. U.S.A., 68, 2757–2760 (1971).

    Article  ADS  CAS  Google Scholar 

  28. Davis, J. N., and Carlsson, A., J. Neurochem., 21, 783–790 (1973).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ALEXANDER, R., DAVIS, J. & LEFKOWITZ, R. Direct identification and characterisation of β-adrenergic receptors in rat brain. Nature 258, 437–440 (1975). https://doi.org/10.1038/258437a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/258437a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing