Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetic trapping of calcium monohydride molecules at millikelvin temperatures

Abstract

Recent advances1,2,3,4,5 in the magnetic trapping and evaporative cooling of atoms to nanokelvin temperatures have opened important areas of research, such as Bose–Einstein condensation and ultracold atomic collisions. Similarly, the ability to trap and cool molecules should facilitate the study of ultracold molecular physics and collisions6; improvements in molecular spectroscopy could be anticipated. Also, ultracold molecules could aid the search for electric dipole moments of elementary particles7. But although laser cooling (in the case of alkali metals1,8,9) and cryogenic surface thermalization (in the case of hydrogen10,11) are currently used to cool some atoms sufficiently to permit their loading into magnetic traps, such techniques are not applicable to molecules, because of the latter's complex internal energy-level structure. (Indeed, most atoms have resisted trapping by these techniques.) We have reported a more general loading technique12 based on elastic collisions with a cold buffer gas, and have used it to trap atomic chromium and europium13,14. Here we apply this technique to magnetically trap a molecular species—calcium monohydride (CaH). We use Zeeman spectroscopy to determine the number of trapped molecules and their temperature, and set upper bounds on the cross-sectional areas of collisional relaxation processes. The technique should be applicable to many paramagnetic molecules and atoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cutaway diagram of the experimental apparatus.
Figure 2: Time evolution of the CaH spectrum.
Figure 3: Fit of CaH spectrum to a thermal distribution of trapped atoms.

Similar content being viewed by others

References

  1. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Davis, K. B.et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Bradley, C. C., Sackett, C. A. & Hulet, R. G. Bose-Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett. 78, 985–989 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Yu, I. A.et al. Evidence for universal quantum reflection of hydrogen from liquid 4He. Phys. Rev. Lett. 71, 1589–1592 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Wineland, D. J., Wieman, C. E. & Smith, S. J. (eds) Proc. 14th Int. Conf. (Am. Inst. Phys., New York, (1995)).

    Google Scholar 

  6. Balakrishnan, N., Forrey, R. C. & Dalgarno, A. Quenching of H2vibrations in ultracold 3He and 4He collisions. Phys. Rev. Lett. 80, 3224–3227 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Hinds, E. A. & Sangster, K. in Time-Reversal—The Arthur Rich Memorial Symposium (eds Skalsey, M., Bucksbaum, P. H., Conti, R. S. & Gidley, D. W.) 77–83 (Am. Inst. Phys., New York, (1993)).

    Google Scholar 

  8. Migdal, A. L., Prodan, J. V., Phillips, W. D., Bergeman, T. H. & Metcalf, H. J. First observation of magnetically trapped neutral atoms. Phys. Rev. Lett. 54, 2596–2599 (1985).

    Article  ADS  Google Scholar 

  9. Ketterle, W. & Van Druten, N. J. Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 37, 181–236 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Hess, H. F.et al. Magnetic trapping of spin-polarized atomic hydrogen. Phys. Rev. Lett. 59, 672–675 (1987).

    Article  ADS  CAS  Google Scholar 

  11. van Roijen, R., Berkhout, J. J., Jaakkola, S. & Walraven, J. T. M. Experiments with atomic hydrogen in a magnetic trapping field. Phys. Rev. Lett. 61, 931–934 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Doyle, J. M., Friedrich, B., Kim, J. & Patterson, D. Buffer-gas loading of atoms and molecules into a magnetic trap. Phys. Rev. A 52, R2515–R2518 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Kim, J.et al. Buffer-gas loading and magnetic trapping of atomic europium. Phys. Rev. Lett. 78, 3665–3668 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Weinstein, J. D.et al. Magnetic trapping of atomic chromium. Phys. Rev. A 57, R3173–R3175 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Hess, H. F. Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen. Phys. Rev. B 34, 3476–3479 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Masuhara, N.et al. Evaporative cooling of spin-polarized atomic hydrogen. Phys. Rev. Lett. 61, 935–938 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Bahns, J. T., Stwalley, W. C. & Gould, P. L. Laser cooling of molecules: a sequential scheme for rotation, translation, and vibration. J. Chem. Phys. 104, 9689–9697 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Cote, R. & Dalgarno, A. Mechanism for the production of vibrationally excited ultracold molecules of 7Li2. Chem. Phys. Lett. 279, 50–54 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Band, Y. B. & Julienne, P. S. Ultracold-molecule production by laser-cooled atom photoassociation. Phys. Rev. A 51, R4317–R4320 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Fioretti, A.et al. Formation of cold Cs2molecules through photoassociation. Phys. Rev. Lett. 80, 4402–4405 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Askar'yan, G. A. Effects of the gradient of a strong electromagnetic beam on electrons and atoms. Sov. Phys. JETP 15, 1088–1090 (1962).

    Google Scholar 

  22. Ashkin, A. Trapping of atoms by resonance radiation pressure. Phys. Rev. Lett. 40, 729–732 (1978).

    Article  ADS  CAS  Google Scholar 

  23. Miller, J. D., Cline, R. a. & Heinzen, D. J. Far-off-resonance optical trapping of atoms. Phys. Rev. A 47, R3567–R4570 (1993).

    Article  ADS  Google Scholar 

  24. Friedrich, B. & Herschbach, D. Alignment and trapping of molecules in intense laser fields. Phys. Rev. Lett. 74, 4623–4626 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Takekoshi, T., Patterson, B. M. & Knize, R. J. Phys. Rev. Lett. (submitted).

  26. Petrich, W., Anderson, M. H., Ensher, J. R. & Cornell, E. A. Stable, tightly confining magnetic trap for evaporative cooling of neutral atoms. Phys. Rev. Lett. 74, 3352–3355 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Kim, J. Buffer-gas Loading and Magnetic Trapping of Atomic Europium.Thesis, Harvard Univ.((1997)).

    Book  Google Scholar 

  28. Berg, L.-E. & Klynning, L. Rotational analysis of the A-X and B-X band systems of CaH. Physica Scripta 10, 331–336 (1974).

    Article  ADS  CAS  Google Scholar 

  29. Martin, H. Laser spectroscopic investigations of the red band systems of CaH. J. Mol. Spectrosc. 108, 66–81 (1984).

    Article  ADS  CAS  Google Scholar 

  30. Leininger, T. & Jeung, G. Ab initio calculation of rovibronic transition spectra of CaH. J. Chem. Phys. 103, 3942–3949 (1995).

    Article  ADS  CAS  Google Scholar 

  31. Berg, L.-E., Ekvall, K. & Kelly, S. Radiative lifetime measurement of vibronic levels of the B2Σ+ state of CaH by laser excitation spectroscopy. Chem. Phys. Lett. 257, 351–355 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Field for discussions on the theory of the Zeeman structure of CaH. This Letter is based on work supported by the US NSF; J.D.W. is supported by an NSF graduate research fellowship.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinstein, J., deCarvalho, R., Guillet, T. et al. Magnetic trapping of calcium monohydride molecules at millikelvin temperatures. Nature 395, 148–150 (1998). https://doi.org/10.1038/25949

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25949

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing