Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Development of β-adrenergic receptor subsensitivity by antidepressants

Abstract

CONSIDERABLE evidence exists that the tricyclic antidepressant drugs are selective inhibitors of monoamine uptake into monoaminergic nerve terminals1,2. These drugs also potentiate pharmacological responses to the monoamines in both the peripheral and central nervous systems3–6. These effects do not explain the discrepancy between the time-course of the biochemical and pharmacological responses which are elicited by these antidepressant drugs within minutes or hours and their clinical antidepressant action which requires treatment for weeks for efficacy to be reached. Furthermore, desipramine, an antidepressant drug, can potentiate neuronal responses to noradrenaline and dopamine in the caudate nucleus7, although it does not block the catecholamine uptake in this area of the brain1,2. Finally the antidepressant iprindole does not influence noradrenaline turnover8 or metabolism9,10 or its uptake into catecholaminergic neurones11, but is effective in potentiating the responses of single cortical and caudate neurones to monoamines12. Vetulani and his associates13 suggested that the therapeutic action of tricyclic antidepressants may be related to postsynaptic adaptive changes in the sensitivity of the noradrenergic adenylate cyclase receptor system rather than to acute presynaptic events. The purpose of the experiments described here was to explore the molecular basis for antidepressant-induced noradrenergic subsensitivity by examining the kinetic properties of the β-adrenergic receptors in the microsomal suspension of rat brain by using a potent β-adrenergic receptor antagonist 3H-dihydroalprenolol as a radiolabelled ligand14–19. Our results indicate that the main mechanism is a reduction in the number of receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Iversen, L. L., Biochem. Pharmac. 23, 1927–1935 (1974).

    Article  CAS  Google Scholar 

  2. Horn, A. S., Coyle, J. T. & Snyder, S. H. Molec. Pharmac. 7, 66–80 (1971).

    CAS  Google Scholar 

  3. Sigg, E. B., Soffer, L. & Gyermek, L. J. Pharmac. exp. Ther. 142, 13–20 (1963).

    CAS  Google Scholar 

  4. Bradshaw, C. M., Roberts, M. H. T. & Szabadi, E. Br. J. Pharmac. 52, 349–358 (1974).

    Article  CAS  Google Scholar 

  5. Schildkraut, J. J. Am. J. Psychiat. 122, 509–522 (1965).

    Article  CAS  Google Scholar 

  6. Schildkraut, J. J. & Kety, S. S. Science 156, 21–30 (1967).

    Article  ADS  CAS  Google Scholar 

  7. Beven, P., Bradshaw, C. M. & Szabadi, E., Br. J. Pharmac. 54, 285–294 (1975).

    Article  Google Scholar 

  8. Rosloff, B. N. & Davis, J. M. Psychopharmacologia 40, 53–64 (1974).

    Article  CAS  Google Scholar 

  9. Lahti, R. A. & Maickel, R. P. Biochem. Pharmac. 20, 482–486 (1971).

    Article  CAS  Google Scholar 

  10. Freeman, J. J. & Sulser, F. J. Pharmac. exp. Ther. 183, 307–315 (1972).

    CAS  Google Scholar 

  11. Ross, S. B., Renyi, A. L. & Ogren, S. O. Life Sci. 10, 1267–1277 (1971).

    Article  CAS  Google Scholar 

  12. Beven, P., Bradshaw, P. M. & Szabadi, E. Br. J. Pharmac. 55, 17–25 (1975).

    Article  Google Scholar 

  13. Vetulani, J., Stawarz, R. J., Dingell, J. V. & Sulser, F. Naunyn Schmiedelberg's Arch. Pharmac. 293, 109–114 (1976).

    Article  CAS  Google Scholar 

  14. Lefkowitz, R. J., Mukherjee, C., Coverstone, M. & Caron, M. C. Biochem. biophys. Res. Commun. 60, 703–709 (1974).

    Article  CAS  Google Scholar 

  15. Mukherjee, C., Caron, M. C., Coverstone, M. & Lefkowitz, R. J. J. biol. Chem. 250, 4869–4876 (1975).

    CAS  PubMed  Google Scholar 

  16. Lefkowitz, R. J. Biochem. Pharmac. 24, 583–590 (1975).

    Article  CAS  Google Scholar 

  17. Alexander, R. W., Davis, J. N., & Lefkowitz, R. J. Nature 258, 437–439 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Nahorski, S. R. Nature 259, 488–489 (1976).

    Article  ADS  CAS  Google Scholar 

  19. Bylund, D. B. & Snyder, S. H. Molec. Pharmac. 12, 568–580 (1976).

    CAS  Google Scholar 

  20. Scatchard, G. Ann. N. Y. Acad. Sci. 51, 660–672 (1949).

    Article  ADS  CAS  Google Scholar 

  21. Kalisker, A., Rutledge, C. D. & Perkins, J. P. Molec. Pharmac. 9, 619–629 (1973).

    CAS  Google Scholar 

  22. Huang, M., Ho, A. K. S. & Daly, J. W. Molec. Pharmac. 9, 711–717 (1973).

    CAS  Google Scholar 

  23. Dismukes, K. & Daly, J. W. Molec. Pharmac. 10, 933 (1974).

    CAS  Google Scholar 

  24. Mukherjee, C., Caron, M. G. & Lefkowitz, R. J. Proc. natn. Acad. Sci. U.S.A. 72, 1945–1949 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BANERJEE, S., KUNG, L., RIGGI, S. et al. Development of β-adrenergic receptor subsensitivity by antidepressants. Nature 268, 455–456 (1977). https://doi.org/10.1038/268455a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/268455a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing